ANALYSIS OF MULTIGRID PRECONDITIONING FOR IMPLICIT PDE SOLVERS FOR DEGENERATE PARABOLIC EQUATIONS

被引:4
|
作者
Donatelli, Marco [1 ]
Semplice, Matteo [1 ]
Serra-Capizzano, Stefano [1 ]
机构
[1] Univ Insubria Sede Como, Dipartimento Matemat & Fis, I-22100 Como, Italy
关键词
nonlinear degenerate parabolic equations; locally Toeplitz matrices; preconditioning and multigrid methods; MATHEMATICAL-MODEL; AGGRESSION;
D O I
10.1137/100807880
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper an implicit numerical method designed for nonlinear degenerate parabolic equations is proposed. A convergence analysis and the study of the related computational cost are provided. In fact, due to the nonlinear nature of the underlying mathematical model, the use of a fixed point scheme is required. The chosen scheme is the Newton method and its convergence is proven under mild assumptions. Every step of the Newton method implies the solution of large, locally structured, linear systems. A special effort is devoted to the spectral analysis of the relevant matrices and to the design of appropriate multigrid preconditioned Krylov methods. Numerical experiments for the validation of our analysis complement this contribution.
引用
收藏
页码:1125 / 1148
页数:24
相关论文
共 50 条
  • [1] Evolution equations for nonlinear degenerate parabolic PDE
    Kubo, M
    Lu, QQ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (08) : 1849 - 1859
  • [2] Learning to Optimize Multigrid PDE Solvers
    Greenfeld, Daniel
    Galun, Meirav
    Kimmel, Ron
    Yavneh, Irad
    Basri, Ronen
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [3] WAVELET-IN-TIME MULTIGRID-IN-SPACE PRECONDITIONING OF PARABOLIC EVOLUTION EQUATIONS
    Andreev, Roman
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01): : A216 - A242
  • [4] Automated transformations for PDE systems with application to multigrid solvers
    Gil, Y
    Gutterman, Z
    Onn, S
    Yavneh, I
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (03): : 886 - 904
  • [5] Automatic Data Partitioning Applied to Multigrid PDE Solvers
    Fresno, Javier
    Gonzalez-Escribano, Arturo
    Llanos, Diego R.
    PROCEEDINGS OF THE 19TH INTERNATIONAL EUROMICRO CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING, 2011, : 239 - 246
  • [6] AMG preconditioning for nonlinear degenerate parabolic equations on nonuniform grids with application to monument degradation
    Donatelli, M.
    Semplice, M.
    Serra-Capizzano, S.
    APPLIED NUMERICAL MATHEMATICS, 2013, 68 : 1 - 18
  • [7] MULTIGRID DYNAMIC ITERATION FOR PARABOLIC EQUATIONS
    LUBICH, C
    OSTERMANN, A
    BIT NUMERICAL MATHEMATICS, 1987, 27 (02) : 216 - 234
  • [8] A wavelet-based algebraic multigrid preconditioning for iterative solvers in finite-element analysis
    Pereira, Fabio Henrique
    Palin, Marcelo F.
    Verardi, Sergio L. L.
    Silva, Viviane C.
    Cardoso, Jose Roberto
    Nabeta, Silvio I.
    IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) : 1553 - 1556
  • [9] Implicit Riemann solvers for the Pn equations
    McClarren, Ryan
    Holloway, James Paul
    Brunner, Thomas
    Mehlhorn, Thomas
    Lecture Notes in Computational Science and Engineering, 2006, 48 : 457 - 467
  • [10] ANALYSIS OF A CLASS OF DEGENERATE PARABOLIC EQUATIONS WITH SATURATION MECHANISMS
    Calvo, Juan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (04) : 2917 - 2951