On moments of negative eigenvalues for the Pauli operator

被引:3
|
作者
Shen, ZW [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jdeq.1998.3483
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns the three-dimensional Pauli operator P = (sigma . (p - A(x)))(2) + V(x) with a non-homogeneous magnetic field B = curl A. The following Lieb-Thirring type inequality for the moment of negative eigenvalues is established, [GRAPHICS] where p > 3/2 and b(p)(x) is the L-p average of \B\ over a certain cube centered at s with a side length scaling like \B\(-1/2). We also show that, if B has a constant direction, [GRAPHICS] where gamma > 1/2 and p > 1. (C) 1999 Academic Press.
引用
收藏
页码:420 / 455
页数:36
相关论文
共 50 条