Hematite (α-Fe2O3) quantification in sedimentary magnetism: limitations of existing proxies and ways forward

被引:45
|
作者
Roberts, Andrew P. [1 ]
Zhao, Xiang [1 ]
Heslop, David [1 ]
Abrajevitch, Alexandra [2 ,3 ]
Chen, Yen-Hua [4 ]
Hu, Pengxiang [1 ]
Jiang, Zhaoxia [5 ,6 ]
Liu, Qingsong [7 ]
Pillans, Brad J. [1 ]
机构
[1] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 2601, Australia
[2] Ehime Univ, Dept Earth Sci, Matsuyama, Ehime, Japan
[3] Russian Acad Sci, Inst Tecton & Geophys, Khabarovsk, Russia
[4] Natl Cheng Kung Univ, Dept Earth Sci, Tainan 70101, Taiwan
[5] Ocean Univ China, Minist Educ, Key Lab Submarine Geosci & Prospecting Tech, Qingdao 266100, Peoples R China
[6] Ocean Univ China, Coll Marine Geosci, Qingdao 266100, Peoples R China
[7] Southern Univ Sci & Technol, Dept Ocean Sci & Engn, Ctr Marine Magnetism, Shenzhen 518055, Peoples R China
基金
澳大利亚研究理事会;
关键词
Hematite; Magnetism; Quantification; HIRM; S-ratio; L-ratio; FINE-GRAINED MAGNETITE; IRON-OXIDE MINERALOGY; DEEP-SEA SEDIMENTS; REMANENT MAGNETIZATION; ACQUISITION CURVES; ROCK-MAGNETISM; RED BEDS; GOETHITE; SUSCEPTIBILITY; TEMPERATURE;
D O I
10.1186/s40562-020-00157-5
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Determination of hematite contributions to sedimentary magnetizations is an important but difficult task in quantitative environmental studies. The poorly crystalline and fine-grained nature of hematite nanoparticles makes quantification of their concentrations in natural environments challenging using mineralogical and spectroscopic methods, while the weak magnetization of hematite and often significant superparamagnetic nanoparticle concentrations make quantification difficult using magnetic remanence measurements. We demonstrate here that much-used magnetic parameters, such as theS-ratio and 'hard' isothermal remanent magnetization (HIRM), tend to significantly underestimate relative and absolute hematite contents, respectively. Unmixing of isothermal remanent magnetization (IRM) acquisition curves is among the more suitable approaches for defining magnetic mineral contributions, although it has under-appreciated uncertainties that limit hematite quantification. Diffuse reflectance spectroscopy and other methods can enable relative hematite and goethite content quantification under some conditions. Combined use of magnetic, mineralogical, and spectroscopic approaches provides valuable cross-checks on estimated hematite contents; such an integrated approach is recommended here. Further work is also needed to rise to the challenge of developing improved methods for hematite quantification.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Hematite (α-Fe2O3) quantification in sedimentary magnetism: limitations of existing proxies and ways forward
    Andrew P. Roberts
    Xiang Zhao
    David Heslop
    Alexandra Abrajevitch
    Yen-Hua Chen
    Pengxiang Hu
    Zhaoxia Jiang
    Qingsong Liu
    Brad J. Pillans
    Geoscience Letters, 7
  • [2] Synthesis and Tuning of Hematite (α-Fe2O3) Iron Oxide Nanorods with Magnetism
    Ramzannezhad, Ali
    Bahari, Ali
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2018, 31 (07) : 2247 - 2253
  • [3] Synthesis and Tuning of Hematite (α-Fe2O3) Iron Oxide Nanorods with Magnetism
    Ali Ramzannezhad
    Ali Bahari
    Journal of Superconductivity and Novel Magnetism, 2018, 31 : 2247 - 2253
  • [4] The synthesis of maghemite and hematite (γ-Fe2O3, α-Fe2O3) nanospheres
    Dar, M. A.
    Ansari, S. G.
    Wahab, R.
    Kim, Young-Soon
    Shin, Hyung-Shik
    PROGRESS IN POWDER METALLURGY, PTS 1 AND 2, 2007, 534-536 : 157 - +
  • [5] Technetium Incorporation into Hematite (α-Fe2O3)
    Skomurski, Frances N.
    Rosso, Kevin M.
    Krupka, Kenneth M.
    McGrail, B. Pete
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (15) : 5855 - 5861
  • [6] ADSORPTION OF IODATE BY HEMATITE (FE2O3)
    COUTURE, RA
    SEITZ, MG
    STEINDLER, MJ
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1979, 32 (JUN): : 397 - 397
  • [7] Surface magnetism, Morin transition, and magnetic dynamics in antiferromagnetic α-Fe2O3 (hematite) nanograins
    Bhowmik, R. N.
    Saravanan, A.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (05)
  • [8] Synthesis, structural, and microwave absorption properties of hematite (α-Fe2O3) and maghemite (γ-Fe2O3)
    Husain, H.
    Nurhayati, N.
    Susanto, A.
    Sujiono, E. H.
    Taryana, Y.
    Krisdayanti, K.
    PHYSICA SCRIPTA, 2023, 98 (07)
  • [9] Electronic Structure of Excitons in Hematite Fe2O3
    Rassouli, Lili
    Dupuis, Michel
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (02): : 743 - 758
  • [10] Hematite (α-Fe2O3) Photoanodes for the Photooxidation of Water
    Herrmann-Geppert, I.
    Bogdanoff, P.
    Hepperle, L.
    Fiechter, S.
    ELECTROCHEMICAL SYNTHESIS OF FUELS 1, 2012, 41 (33): : 201 - 212