DISCUSSION ON THE EXISTENCE OF BEST PROXIMITY POINTS IN METRIC SPACES

被引:0
|
作者
Hong, Shihuang [1 ]
Zhou, Jie [1 ]
Chen, Ji [1 ]
Hou, Haiyang [1 ]
Wang, Li [2 ]
机构
[1] Hangzhou Dianzi Univ, Sci Coll, Hangzhou 310018, Peoples R China
[2] Hainan Univ, Math Dept, Haikou 570228, Hainan, Peoples R China
来源
FIXED POINT THEORY | 2020年 / 21卷 / 01期
基金
中国国家自然科学基金;
关键词
Fixed points; best proximity points; generalized contractions; aproximal admissible mappings; THEOREMS; CONTRACTIONS;
D O I
10.24193/fpt-ro.2020.1.14
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we modify the definition of some generalized proximal contractions and enumerate a list of equivalent conditions for various versions of generalized proximal contractions of non-self set-valued mappings on (ordered) metric spaces. By using the fixed point means, we establish the existence of best proximity points for mappings involving such contractions which extend and improve many existing related results, as well as, reveal that most of existing best proximity point theorems on metric spaces are in fact equivalent and immediate consequences of well-known fixed point theorems. Finally, some examples are given to support our results.
引用
收藏
页码:191 / 210
页数:20
相关论文
共 50 条
  • [1] Completeness of metric spaces and existence of best proximity points
    Khan, Arshad Ali
    Ali, Basit
    Nazir, Talat
    de la Sen, Manuel
    AIMS MATHEMATICS, 2022, 7 (05): : 7318 - 7336
  • [2] Existence and uniqueness of best proximity points in geodesic metric spaces
    Fernandez-Leon, Aurora
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (04) : 915 - 921
  • [3] Existence of Best Proximity Points in Regular Cone Metric Spaces
    Kumar, L.
    Som, T.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2015, 5 (01): : 44 - 53
  • [4] The existence of best proximity points in metric spaces with the property UC
    Suzuki, Tomonari
    Kikkawa, Misako
    Vetro, Calogero
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 2918 - 2926
  • [5] NOTE ON THE EXISTENCE OF BEST PROXIMITY POINTS IN PARTIALLY ORDERED METRIC SPACES
    Liu, Huahua
    Hong, Shihuang
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (08) : 1331 - 1353
  • [6] EXISTENCE AND CONVERGENCE RESULTS FOR BEST PROXIMITY POINTS IN CONE METRIC SPACES
    Lee, Byung-Soo
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2014, 4 (02): : 133 - 140
  • [7] The existence of best proximity points for cyclic quasi-φ-contractions in metric spaces
    Safari-Hafshejani, Akram
    FILOMAT, 2024, 38 (05) : 1751 - 1761
  • [8] On Best Proximity Points in Metric and Banach Spaces
    Espinola, Rafa
    Fernandez-Leon, Aurora
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (03): : 533 - 550
  • [9] On existence and uniqueness of best proximity points for proximal β-quasi contractive mappings on metric spaces
    Ayari, M. Iadh
    Jatradat, M. M. M.
    Mustafa, Z.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (45): : 445 - 458
  • [10] Coupled best proximity points in ordered metric spaces
    P Kumam
    V Pragadeeswarar
    M Marudai
    K Sitthithakerngkiet
    Fixed Point Theory and Applications, 2014