Gate-controlled anisotropy in Aharonov-Casher spin interference: Signatures of Dresselhaus spin-orbit inversion and spin phases

被引:18
|
作者
Nagasawa, Fumiya [1 ]
Reynoso, Andres A. [2 ,3 ]
Pablo Baltanas, Jose [4 ]
Frustaglia, Diego [4 ,5 ]
Saarikoski, Henri [6 ]
Nitta, Junsaku [1 ,7 ,8 ]
机构
[1] Tohoku Univ, Dept Mat Sci, Sendai, Miyagi 9808579, Japan
[2] Comis Nacl Energia Atom, Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[4] Univ Seville, Dept Fis Aplicada 2, E-41012 Seville, Spain
[5] Albert Ludwigs Univ Freiburg, Freiburg Inst Adv Studies FRIAS, D-79104 Freiburg, Germany
[6] RIKEN, CEMS, Wako, Saitama 3510198, Japan
[7] Tohoku Univ, Ctr Spintron Res Network, Sendai, Miyagi 9808577, Japan
[8] Tohoku Univ, Org Adv Studies, Core Res Cluster, Ctr Sci & Innovat Spintron, Sendai, Miyagi 9808577, Japan
基金
欧盟地平线“2020”; 日本学术振兴会;
关键词
SEMICONDUCTORS;
D O I
10.1103/PhysRevB.98.245301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The coexistence of Rashba and Dresselhaus spin-orbit interactions (SOIs) in semiconductor quantum wells leads to an anisotropic effective field coupled to carriers' spins. We demonstrate a gate-controlled anisotropy in Aharonov-Casher (AC) spin interferometry experiments with InGaAs mesoscopic rings by using an in-plane magnetic field as a probe. Supported by a perturbation-theory approach, we find that the Rashba SOI strength controls the AC resistance anisotropy via spin dynamic and geometric phases and establish ways to manipulate them by employing electric and magnetic tunings. Moreover, assisted by two-dimensional numerical simulations, we identify a remarkable anisotropy inversion in our experiments attributed to a sign change in the renormalized linear Dresselhaus SOI controlled by electrical means, which would open the door to new possibilities for spin manipulation.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Geometric spin phases in Aharonov-Casher interference
    Frustaglia, D.
    Nitta, J.
    [J]. SOLID STATE COMMUNICATIONS, 2020, 311
  • [2] Aharonov-Casher and spin Hall effects in mesoscopic ring structures with strong spin-orbit interaction
    Borunda, M. F.
    Liu, Xin
    Kovalev, Alexey A.
    Liu, Xiong-Jun
    Jungwirth, T.
    Sinova, Jairo
    [J]. PHYSICAL REVIEW B, 2008, 78 (24)
  • [3] Time reversal Aharonov-Casher effect using Rashba spin-orbit interaction
    Nitta, Junsaku
    Bergsten, Tobias
    [J]. NEW JOURNAL OF PHYSICS, 2007, 9
  • [4] Aharonov-Casher effect in a two-dimensional hole ring with spin-orbit interaction
    Kovalev, Alexey A.
    Borunda, M. F.
    Jungwirth, T.
    Molenkamp, L. W.
    Sinova, Jairo
    [J]. PHYSICAL REVIEW B, 2007, 76 (12):
  • [5] Time-reversal Aharonov-Casher effect in mesoscopic rings with spin-orbit interaction
    Zhu, Zhenyue
    Wang, Yong
    Xia, Ke
    Xie, X. C.
    Ma, Zhongshui
    [J]. PHYSICAL REVIEW B, 2007, 76 (12)
  • [6] Suppression of Aharonov-Casher spin interference in an InGaAs ring array
    Nitta, Junsaku
    Takagi, Jun
    Nagasawa, Fumiya
    Kohda, Makoto
    [J]. INTERNATIONAL SYMPOSIUM: NANOSCIENCE AND QUANTUM PHYSICS 2011 (NANOPHYS'11), 2011, 302
  • [7] Aharonov-Casher effect for particles of arbitrary spin
    Azimov, YI
    Ryndin, RM
    [J]. PHYSICS OF ATOMIC NUCLEI, 1998, 61 (11) : 1932 - 1936
  • [8] Aharonov-Casher phase and spin motive force
    Choi, TS
    [J]. MODERN PHYSICS LETTERS B, 2006, 20 (04): : 189 - 197
  • [9] Relativistic Aharonov-Casher phase in spin 1
    Swansson, JA
    McKellar, BHJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (05): : 1051 - 1061
  • [10] Thermal spin-orbit torque with Dresselhaus spin-orbit coupling
    Xue, Chun-Yi
    Wang, Ya-Ru
    Wang, Zheng-Chuan
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (02):