A note on geometric constructions of bi-invariant orderings

被引:0
|
作者
Ito, Tetsuya [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo 1138654, Japan
关键词
Bi-invariant ordering; Iterated integral; Holonomy representation; Rational homotopy;
D O I
10.1016/j.topol.2011.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct bi-invariant total orderings of residually torsion-free nilpotent groups by using Chen's iterated integrals. This construction can be seen as a generalization of the Magnus ordering of the free groups, and equivalent to the classical construction which uses an iteration of central extensions. Our geometric construction provides a connection between bi-orderings and the rational homotopy theory. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:690 / 696
页数:7
相关论文
共 50 条
  • [1] Geometric Structures on Lie Groups with Flat Bi-invariant Metric
    Cortes, Vicente
    Schaefer, Lars
    JOURNAL OF LIE THEORY, 2009, 19 (02) : 423 - 437
  • [2] ANALYTICALLY INVARIANT AND BI-INVARIANT SUBSPACES
    HERRERO, DA
    SALINAS, N
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 173 (446) : 117 - 136
  • [3] ON BI-INVARIANT WORD METRICS
    Gal, Swiatoslaw R.
    Kedra, Jarek
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2011, 3 (02) : 161 - 175
  • [4] A bi-invariant Einstein-Hilbert action for the non-geometric string
    Blumenhagen, Ralph
    Deser, Andreas
    Plauschinn, Erik
    Rennecke, Felix
    PHYSICS LETTERS B, 2013, 720 (1-3) : 215 - 218
  • [5] Bi-invariant metrics on the contactomorphism groups
    Sandon, Sheila
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2015, 9 (02): : 195 - 228
  • [6] CONFORMAL HOLONOMY OF BI-INVARIANT METRICS
    Leitner, Felipe
    CONFORMAL GEOMETRY AND DYNAMICS, 2008, 12 : 18 - 31
  • [7] BI-INVARIANT METRICS ON THE GROUP OF SYMPLECTOMORPHISMS
    Han, Zhigang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (06) : 3343 - 3357
  • [8] Moduli space of bi-invariant metrics
    Torres, Juan Flores
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [9] BI-INVARIANT SUBSPACES OF WEAK CONSTRICTIONS.
    Wu, Pei-Yuan
    1978, 4 : 45 - 47
  • [10] Bi-invariant and noninvariant metrics on Lie groups
    Ghanam, R.
    Hindeleh, F.
    Thompson, G.
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (10)