Mixing in ICF implosions on the National Ignition Facility caused by the fill-tube

被引:57
|
作者
Weber, C. R. [1 ]
Clark, D. S. [1 ]
Pak, A. [1 ]
Alfonso, N. [2 ]
Bachmann, B. [1 ]
Hopkins, L. F. Berzak [1 ]
Bunn, T. [1 ]
Crippen, J. [2 ]
Divol, L. [1 ]
Dittrich, T. [1 ]
Kritcher, A. L. [1 ]
Landen, O. L. [1 ]
Le Pape, S. [1 ,3 ]
MacPhee, A. G. [1 ]
Marley, E. [1 ]
Masse, L. P. [1 ]
Milovich, J. L. [1 ]
Nikroo, A. [1 ]
Patel, P. K. [1 ]
Pickworth, L. A. [1 ]
Rice, N. [2 ]
Smalyuk, V. A. [1 ]
Stadermann, M. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Gen Atom, San Diego, CA 92168 USA
[3] Sorbonne Univ, UPMC Univ Paris 06, Univ Paris Saclay, LULI,CNRS,Ecole Polytech,CEA, F-91128 Palaiseau, France
关键词
FABRICATION; TARGETS;
D O I
10.1063/1.5125599
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The micrometer-scale tube that fills capsules with thermonuclear fuel in inertial confinement fusion experiments at the National Ignition Facility is also one of the implosion's main degradation sources. It seeds a perturbation that injects the ablator material into the center, radiating away some of the hot-spot energy. This paper discusses how the perturbation arises in experiments using high-density carbon ablators and how the ablator mix interacts once it enters the hot-spot. Both modeling and experiments show an in-flight areal-density perturbation and localized x-ray emission at stagnation from the fill-tube. Simulations suggest that the fill-tube is degrading an otherwise 1D implosion by similar to 2x, but when other degradation sources are present, the yield reduction is closer to 20%. Characteristics of the fill-tube assembly, such as the through-hole size and the glue mass, alter the dynamics and magnitude of the degradation. These aspects point the way toward improvements in the design, some of which (smaller diameter fill-tube) have already shown improvements. Published under license by AIP Publishing.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Simulated impact of fill tube geometry on recent high-yield implosions at the National Ignition Facility
    Kuczek, J. J.
    Haines, B. M.
    PHYSICS OF PLASMAS, 2023, 30 (09)
  • [2] Cross-code comparison of the impact of the fill tube on high yield implosions on the National Ignition Facility
    Haines, Brian M.
    Clark, Daniel S.
    Weber, Christopher R.
    Edwards, M. John
    Batha, Steven H.
    Kline, John L.
    PHYSICS OF PLASMAS, 2020, 27 (08)
  • [3] Application of cross-beam energy transfer to control drive symmetry in ICF implosions in low gas fill Hohlraums at the National Ignition Facility
    Pickworth, L. A.
    Doeppner, T.
    Hinkel, D. E.
    Ralph, J. E.
    Bachmann, B.
    Masse, L. P.
    Divol, L.
    Benedetti, L. R.
    Celliers, P. M.
    Chen, H.
    Hohenberger, M.
    Khan, S. F.
    Landen, O. L.
    Lemos, N.
    MacGowan, B. J.
    Mariscal, D. A.
    Michel, P. A.
    Millot, M.
    Moore, A. S.
    Park, J.
    Schneider, M. B.
    Callahan, D. A.
    Hurricane, O. A.
    PHYSICS OF PLASMAS, 2020, 27 (10)
  • [4] Diagnostics for high density implosions at the National Ignition Facility
    Cable, MD
    Barbee, TW
    Lerche, RA
    Nelson, MB
    Moran, MJ
    Ress, DB
    Sangster, TC
    Trebes, JE
    Turner, RE
    Phillips, TW
    Hicks, D
    Li, CK
    Petrasso, RD
    Seguin, F
    FUSION ENERGY 1996, VOL 3, 1997, : 153 - 159
  • [5] Cryogenic thermonuclear fuel implosions on the National Ignition Facility
    Glenzer, S. H.
    Callahan, D. A.
    MacKinnon, A. J.
    Kline, J. L.
    Grim, G.
    Alger, E. T.
    Berger, R. L.
    Bernstein, L. A.
    Betti, R.
    Bleuel, D. L.
    Boehly, T. R.
    Bradley, D. K.
    Burkhart, S. C.
    Burr, R.
    Caggiano, J. A.
    Castro, C.
    Casey, D. T.
    Choate, C.
    Clark, D. S.
    Celliers, P.
    Cerjan, C. J.
    Collins, G. W.
    Dewald, E. L.
    DiNicola, P.
    DiNicola, J. M.
    Divol, L.
    Dixit, S.
    Doeppner, T.
    Dylla-Spears, R.
    Dzenitis, E.
    Eckart, M.
    Erbert, G.
    Farley, D.
    Fair, J.
    Fittinghoff, D.
    Frank, M.
    Frenje, L. J. A.
    Friedrich, S.
    Casey, D. T.
    Johnson, M. Gatu
    Gibson, C.
    Giraldez, E.
    Glebov, V.
    Glenn, S.
    Guler, N.
    Haan, S. W.
    Haid, B. J.
    Hammel, B. A.
    Hamza, A. V.
    Haynam, C. A.
    PHYSICS OF PLASMAS, 2012, 19 (05)
  • [6] First beryllium capsule implosions on the National Ignition Facility
    Kline, J. L.
    Yi, S. A.
    Simakov, A. N.
    Olson, R. E.
    Wilson, D. C.
    Kyrala, G. A.
    Perry, T. S.
    Batha, S. H.
    Zylstra, A. B.
    Dewald, E. L.
    Tommasini, R.
    Ralph, J. E.
    Strozzi, D. J.
    MacPhee, A. G.
    Callahan, D. A.
    Hinkel, D. E.
    Hurricane, O. A.
    Milovich, J. L.
    Rygg, J. R.
    Khan, S. F.
    Haan, S. W.
    Celliers, P. M.
    Clark, D. S.
    Hammel, B. A.
    Kozioziemski, B.
    Schneider, M. B.
    Marinak, M. M.
    Rinderknecht, H. G.
    Robey, H. F.
    Salmonson, J. D.
    Patel, P. K.
    Ma, T.
    Edwards, M. J.
    Stadermann, M.
    Baxamusa, S.
    Alford, C.
    Wang, M.
    Nikroo, A.
    Rice, N.
    Hoover, D.
    Youngblood, K. P.
    Xu, H.
    Huang, H.
    Sio, H.
    PHYSICS OF PLASMAS, 2016, 23 (05)
  • [7] Validating hydrodynamic growth in National Ignition Facility implosions
    Peterson, J. L.
    Casey, D. T.
    Hurricane, O. A.
    Raman, K. S.
    Robey, H. F.
    Smalyuk, V. A.
    PHYSICS OF PLASMAS, 2015, 22 (05)
  • [8] A technique for extending by ∼103 the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGA
    Sio, H.
    Seguin, F. H.
    Frenje, J. A.
    Johnson, M. Gatu
    Zylstra, A. B.
    Rinderknecht, H. G.
    Rosenberg, M. J.
    Li, C. K.
    Petrasso, R. D.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11):
  • [9] Variable convergence liquid layer implosions on the National Ignition Facility
    Zylstra, A. B.
    Yi, S. A.
    Haines, B. M.
    Olson, R. E.
    Leeper, R. J.
    Braun, T.
    Biener, J.
    Kline, J. L.
    Batha, S. H.
    Hopkins, L. Berzak
    Bhandarkar, S.
    Bradley, P. A.
    Crippen, J.
    Farrell, M.
    Fittinghoff, D.
    Herrmann, H. W.
    Huang, H.
    Khan, S.
    Kong, C.
    Kozioziemski, B. J.
    Kyrala, G. A.
    Ma, T.
    Meezan, N. B.
    Merrill, F.
    Nikroo, A.
    Peterson, R. R.
    Rice, N.
    Sater, J. D.
    Shah, R. C.
    Stadermann, M.
    Volegov, P.
    Walters, C.
    Wilson, D. C.
    PHYSICS OF PLASMAS, 2018, 25 (05)
  • [10] Hydroscaling indirect-drive implosions on the National Ignition Facility
    Baker, K. L.
    Jones, O.
    Weber, C.
    Clark, D.
    Patel, P. K.
    Thomas, C. A.
    Landen, O. L.
    Nora, R.
    Anderson, G. J.
    Gaffney, J.
    MacLaren, S.
    Casey, D. T.
    Doppner, T.
    Dewald, E. L.
    Tommasini, R.
    Spears, B. K.
    Salmonson, J.
    Hohenberger, M.
    Khan, S.
    Zylstra, A.
    Kritcher, A.
    Amendt, P.
    Smalyuk, V
    Lindl, J.
    Young, C.
    Ross, J. S.
    Ho, D.
    Hurricane, O. A.
    Callahan, D. A.
    Woods, T.
    Milovich, J. L.
    Strozzi, D. J.
    Bachmann, B.
    Bionta, R.
    Celliers, P. M.
    Fittinghoff, D.
    Hatarik, R.
    Johnson, M. Gatu
    Meaney, K.
    Millot, M.
    Volegov, P. L.
    Wilde, C.
    PHYSICS OF PLASMAS, 2022, 29 (06)