A KNESER-TYPE THEOREM FOR BACKWARD DOUBLY STOCHASTIC DIFFERENTIAL EQUATIONS

被引:3
|
作者
Shi, Yufeng [1 ]
Zhu, Qingfeng [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Shandong Univ Finance, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Backward doubly stochastic differential equations; comparison theorem; maximal solution; Kneser-type theorem; SPDES;
D O I
10.3934/dcdsb.2010.14.1565
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of backward doubly stochastic differential equations (BDS-DEs in short) with continuous coefficients is studied. We give the comparison theorems, the existence of the maximal solution and the structure of solutions for BDSDEs with continuous coefficients. A Kneser-type theorem for BDSDEs is obtained. We show that there is either unique or uncountable solutions for this kind of BDSDEs.
引用
收藏
页码:1565 / 1579
页数:15
相关论文
共 50 条