Mobility and Decay Dynamics of Charge Carriers in One-Dimensional Selenium van der Waals Solid

被引:12
|
作者
Bhaskar, Prashant [1 ]
Achtstein, Alexander W. [1 ,2 ]
Diedenhofen, Silke L. [1 ]
Siebbeles, Laurens D. A. [1 ]
机构
[1] Delft Univ Technol, Optoelect Mat Sect, Dept Chem Engn, Van der Maasweg 9, NL-2629 HZ Delft, Netherlands
[2] Tech Univ Berlin, Inst Opt & Atomare Phys, Str 17 Juni 135, D-10623 Berlin, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2017年 / 121卷 / 34期
关键词
RESOLVED MICROWAVE CONDUCTIVITY; FIELD-EFFECT TRANSISTORS; TRIGONAL SELENIUM; SINGLE-CRYSTALS; CONJUGATED POLYMERS; BLACK PHOSPHORUS; RAMAN-SPECTRA; CHAINS; RECOMBINATION; NANOCHANNELS;
D O I
10.1021/acs.jpcc.7b05183
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Trigonal selenium is a semiconducting van der Waals solid that consists of helical atomic chains. We studied the mobility and decay dynamics of excess electrons and holes moving along the selenium chains. Excess charge carriers were generated by irradiation of powdered selenium with 3 MeV electron pulses. Their mobility and decay via trapping or recombination was studied by time-resolved microwave conductivity measurements as a function of temperature. The mobility of charge carriers along the Se chains is at least ca. 0.5 cm(2).V-1.s(-1) at room temperature. Charges decay predominantly by trapping at defects. The appreciable mobility, together with the potential for large-scale production of Se wires by liquid exfoliation, makes this material of great interest for use in nanoelectronics.
引用
收藏
页码:18917 / 18921
页数:5
相关论文
共 50 条
  • [1] One-dimensional van der Waals heterostructures
    Xiang, Rong
    Inoue, Taiki
    Zheng, Yongjia
    Kumamoto, Akihito
    Qian, Yang
    Sato, Yuta
    Liu, Ming
    Tang, Daiming
    Gokhale, Devashish
    Guo, Jia
    Hisama, Kaoru
    Yotsumoto, Satoshi
    Ogamoto, Tatsuro
    Arai, Hayato
    Kobayashi, Yu
    Zhang, Hao
    Hou, Bo
    Anisimov, Anton
    Maruyama, Mina
    Miyata, Yasumitsu
    Okada, Susumu
    Chiashi, Shohei
    Li, Yan
    Kong, Jing
    Kauppinen, Esko I.
    Ikuhara, Yuichi
    Suenaga, Kazu
    Maruyama, Shigeo
    SCIENCE, 2020, 367 (6477) : 537 - +
  • [2] One-dimensional van der Waals quantum materials
    Balandin, Alexander A.
    Kargar, Fariborz
    Salguero, Tina T.
    Lake, Roger K.
    MATERIALS TODAY, 2022, 55 : 74 - 91
  • [3] One-dimensional van der Waals quantum materials
    Balandin, Alexander A.
    Kargar, Fariborz
    Salguero, Tina T.
    Lake, Roger K.
    Materials Today, 2022, 55 : 74 - 91
  • [4] One-Dimensional van der Waals Heterostructures: A Perspective
    Guo, Jia
    Xiang, Rong
    Cheng, Ting
    Maruyama, Shigeo
    Li, Yan
    ACS NANOSCIENCE AU, 2021, 2 (01): : 3 - 11
  • [5] One-Dimensional van der Waals Heterojunction Diode
    Feng, Ya
    Li, Henan
    Inoue, Taiki
    Chiashi, Shohei
    Rotkin, Slava, V
    Xiang, Rong
    Maruyama, Shigeo
    ACS NANO, 2021, 15 (03) : 5600 - 5609
  • [6] The formation of a one-dimensional van der Waals selenium crystal from the three-dimensional amorphous phase: A spectroscopic signature of van der Waals bonding
    Krbal, Milos
    Kolobov, Alexander V.
    Fons, Paul
    Saito, Yuta
    Belev, George
    Kasap, Safa
    APPLIED PHYSICS LETTERS, 2022, 120 (03)
  • [7] Charge Mobility and Recombination Mechanisms in Tellurium van der Waals Solid
    Bhaskar, Prashant
    Achtstein, Alexander W.
    Vermeulen, Martien J. W.
    Siebbeles, Laurens D. A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (01): : 841 - 847
  • [8] Carbyne Nanocrystal: One-Dimensional van der Waals Crystal
    Yang, Fei
    Li, Chao
    Li, Jiling
    Liu, Pu
    Yang, Guowei
    ACS NANO, 2021, 15 (10) : 16769 - 16776
  • [9] Building blocks for one-dimensional van der Waals heterostructures
    Rong Xiang
    Shigeo Maruyama
    Yan Li
    National Science Open, 2022, 1 (03) : 136 - 144
  • [10] Van der Waals heterostructures with one-dimensional atomic crystals
    Qin, Jing-Kai
    Wang, Cong
    Zhen, Liang
    Li, Lain-Jong
    Xu, Cheng-Yan
    Chai, Yang
    PROGRESS IN MATERIALS SCIENCE, 2021, 122