Hierarchical spheres constructed by defect-rich MoS2/carbon nanosheets for efficient electrocatalytic hydrogen evolution

被引:264
|
作者
Yang, Linjing [1 ]
Zhou, Weijia [1 ]
Lu, Jia [1 ]
Hou, Dongman [2 ]
Ke, Yunting [1 ]
Li, Guoqiang [2 ]
Tang, Zhenghua [1 ]
Kang, Xiongwu [1 ]
Chen, Shaowei [1 ,3 ]
机构
[1] S China Univ Technol, Guangzhou Higher Educ Mega Ctr, Sch Environm & Energy, New Energy Res Inst, Guangzhou 510006, Guangdong, Peoples R China
[2] S China Univ Technol, State Key Lab Luminescent Mat & Devices, Engn Res Ctr Solid State Lighting & Its Informati, 381 Wushan Rd, Guangzhou 510641, Guangdong, Peoples R China
[3] Univ Calif Santa Cruz, Dept Chem & Biochem, 1156 High St, Santa Cruz, CA 95064 USA
基金
中国国家自然科学基金;
关键词
Micro-emulsion; MoS2/carbon; Hierarchical spheres; Active sites; Inverted molybdenum reaction; ELECTROCHEMICAL H-2 EVOLUTION; MOS2 ULTRATHIN NANOSHEETS; ACTIVE EDGE SITES; GRAPHENE OXIDE; CATALYST; NITROGEN; NANOPARTICLES; SURFACE; LAYER; FILMS;
D O I
10.1016/j.nanoen.2016.02.056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly active and stable MoS2/carbon hierarchical spheres with abundant active edge sites were fabricated by a simple micro-emulsion procedure where PVP was used as the carbon source, and carbon disulfide as the sulfur source and oil phase in micro-emulsion to control the morphology of MoS2. Hierarchical spheres of MoS2/carbon with a diameter of ca. 500 nm were obtained and characterized by scanning and transmission electron microscopic measurements. With a high electrochemically accessible surface area and defect-rich MoS2 nanosheets, the MoS2/carbon hierarchical spheres exhibited an excellent electrocatalytic activity for hydrogen evolution reaction with a low onset potential of -103 mV (vs. RHE), small Tafel of 56.1 mV dec(-1), as well as extraordinary catalytic stability. The results were accounted for by the "inverted molybdenum reaction" that served as a novel way of regulating Mo catalytic sites of MoS2 electrocatalysts. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:490 / 498
页数:9
相关论文
共 50 条
  • [1] Exfoliation of the defect-rich MoS2 nanosheets to obtain nanodots modified MoS2 thin nanosheets for electrocatalytic hydrogen evolution
    Qiangbin Yang
    Yi He
    Yi Fan
    Fei Li
    Xi Chen
    [J]. Journal of Materials Science: Materials in Electronics, 2017, 28 : 7413 - 7418
  • [2] Exfoliation of the defect-rich MoS2 nanosheets to obtain nanodots modified MoS2 thin nanosheets for electrocatalytic hydrogen evolution
    Yang, Qiangbin
    He, Yi
    Fan, Yi
    Li, Fei
    Chen, Xi
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (10) : 7413 - 7418
  • [3] Defect-Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution
    Xie, Junfeng
    Zhang, Hao
    Li, Shuang
    Wang, Ruoxing
    Sun, Xu
    Zhou, Min
    Zhou, Jingfang
    Lou, Xiong Wen
    Xie, Yi
    [J]. ADVANCED MATERIALS, 2013, 25 (40) : 5807 - +
  • [4] Defect-rich MoS2 nanosheets vertically grown on graphene-protected Ni foams for high efficient electrocatalytic hydrogen evolution
    Zhu, Peng
    Chen, Yu
    Zhou, Yu
    Yang, Zhixiong
    Wu, Di
    Xiong, Xiang
    Ouyang, Fangping
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (31) : 14087 - 14095
  • [5] Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction
    Junfeng Xie
    Haichao Qu
    Jianping Xin
    Xinxia Zhang
    Guanwei Cui
    Xiaodong Zhang
    Jian Bao
    Bo Tang
    Yi Xie
    [J]. Nano Research, 2017, 10 : 1178 - 1188
  • [6] Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction
    Xie, Junfeng
    Qu, Haichao
    Xin, Jianping
    Zhang, Xinxia
    Cui, Guanwei
    Zhang, Xiaodong
    Bao, Jian
    Tang, Bo
    Xie, Yi
    [J]. NANO RESEARCH, 2017, 10 (04) : 1178 - 1188
  • [7] Controllable Sandwiching of Reduced Graphene Oxide in Hierarchical Defect-Rich MoS2 Ultrathin Nanosheets with Expanded Interlayer Spacing for Electrocatalytic Hydrogen Evolution Reaction
    Shah, Sayyar Ali
    Zhu, Guoxing
    Shen, Xiaoping
    Kong, Lirong
    Ji, Zhenyuan
    Xu, Keqiang
    Zhou, Hongbo
    Zhu, Jun
    Song, Peng
    Song, Chunsen
    Yuan, Aihua
    Miao, Xuli
    [J]. ADVANCED MATERIALS INTERFACES, 2018, 5 (23):
  • [8] Water-Soluble Defect-Rich MoS2 Ultrathin Nanosheets for Enhanced Hydrogen Evolution
    Zhang, Jianfang
    Wang, Yan
    Cui, Jiewu
    Wu, Jingjie
    Li, Yang
    Zhu, Tianyu
    Kang, Huirui
    Yang, Jingping
    Sun, Jian
    Qin, Yongqiang
    Zhang, Yong
    Ajayan, Pulickel M.
    Wu, Yucheng
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (12): : 3282 - 3289
  • [9] Platinum Nanocrystals Decorated on Defect-Rich MoS2 Nanosheets for pH-Universal Hydrogen Evolution Reaction
    Xie, Junfeng
    Gao, Li
    Jiang, Hailong
    Zhang, Xiaodong
    Lei, Fengcai
    Hao, Pin
    Tang, Bo
    Xie, Yi
    [J]. CRYSTAL GROWTH & DESIGN, 2019, 19 (01) : 60 - 65
  • [10] Defect-rich MoS2/NiS2 nanosheets loaded on SiNWs for efficient and stable photoelectrochemical hydrogen production
    Lin, Feifei
    Tian, Renren
    Dong, Pei
    Jiang, Guofei
    He, Fengting
    Wang, Shuaijun
    Fu, Rongbing
    Zhao, Chaocheng
    Gu, Ying-Ying
    Wang, Shaobin
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 631 : 133 - 142