Camera Pose Estimation Method Based on Deep Neural Network

被引:0
|
作者
Tang Xia Qing [1 ]
Wu Fan [1 ]
Zong Yan Tao [1 ]
机构
[1] Army Acad Armored Forces, 12 Dujiakan Yard, Beijing, Peoples R China
关键词
camera pose estimation; feature point extraction; convolutional neural network; recurrent neural network; deep learning; SLAM;
D O I
10.1145/3342999.3343014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a camera pose estimation algorithm based on deep neural network, which returns the translation and rotation of the camera based on supervised deep learning. This paper uses the ORB algorithm to extract the feature points of the image, and the feature points are labeled on the color image for training and testing. The deep neural network based on the structure of recurrent convolution neural network (RCNN). Firstly, some features extracted by the convolution neural network. Then,it builds the order model base on the RCNN network. The RMS error is used as the loss function to train the network, in which the rotation is expressed by Euler angle. Finally,experiments on KITTI VO dataset show that the proposed method is effective.
引用
下载
收藏
页码:85 / 90
页数:6
相关论文
共 50 条
  • [1] Industry robotic motion and pose recognition method based on camera pose estimation and neural network
    Wang, Ding
    Xie, Fei
    Yang, Jiquan
    Lu, Rongjian
    Zhu, Tengfei
    Liu, Yijian
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2021, 18 (03):
  • [2] Human Pose Estimation Based on Deep Neural Network
    Zhu, Lingfei
    Wan, Wanggen
    2018 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2018, : 90 - 96
  • [3] Camera pose estimation by an artificial neural network
    Benton, Ryan G.
    Chu, Chee-hung Henry
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 604 - 611
  • [4] RGB-D CAMERA POSE ESTIMATION USING DEEP NEURAL NETWORK
    Guo, Fei
    He, Yifeng
    Guan, Ling
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 408 - 412
  • [5] Fusion estimation of vehicle pose based on the cascaded deep neural network
    Chang B.
    Li X.
    Xu Q.
    Li N.
    Hu W.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2022, 43 (05): : 57 - 67
  • [6] Human Pose Estimation Based on Step Deep Convolution Neural Network
    Bao, Wenxia
    Yang, Yaping
    Liang, Dong
    Zhu, Ming
    2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,
  • [7] Joint Customer Pose and Orientation Estimation using Deep Neural Network from Surveillance Camera
    Liu, Jingwen
    Gu, Yanlei
    Kamijo, Shunsuke
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2016, : 216 - 221
  • [8] Dance Action Recognition and Pose Estimation Based on Deep Convolutional Neural Network
    Zhu, Fengling
    Zhu, Ruichao
    TRAITEMENT DU SIGNAL, 2021, 38 (02) : 529 - 538
  • [9] Multi-person pose estimation based on a deep convolutional neural network
    Duan, Peng
    Wang, Tingwei
    Cui, Maowei
    Sang, Hongyan
    Sun, Qun
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 62 : 245 - 252
  • [10] Head Pose Estimation for an Omnidirectional Camera using a Convolutional Neural Network
    Yamaura, Yusuke
    Tsuboshita, Yukihiro
    Onishi, Takeshi
    PROCEEDINGS 2018 IEEE 13TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2018,