Enhancing Heat Capacity of Colloidal Suspension Using Nanoscale Encapsulated Phase-Change Materials for Heat Transfer

被引:90
|
作者
Hong, Yan [1 ,2 ]
Ding, Shujiang [1 ]
Wu, Wei
Hu, Jianjun [3 ]
Voevodin, Andrey A.
Gschwender, Lois
Snyder, Ed.
Chow, Louis [2 ]
Su, Ming [1 ,2 ]
机构
[1] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32826 USA
[2] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32826 USA
[3] USAF, Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
基金
美国国家科学基金会;
关键词
encapsulation; phase-change nanoparticles; heat transfer; colloid suspension; CORE-SHELL NANOPARTICLES; BIOMEDICAL APPLICATIONS; MAGNETIC NANOPARTICLES; BOTTOM-UP; PARTICLES; GOLD; CONVERSION; STORAGE; SILICA; FLUID;
D O I
10.1021/am100204b
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.
引用
收藏
页码:1685 / 1691
页数:7
相关论文
共 50 条
  • [1] Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension
    Hajjar, Ahmad
    Mehryan, S. A. M.
    Ghalambaz, Mohammad
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 166
  • [2] Heat transfer analysis of encapsulated phase change materials
    Zhao, Weihuan
    Neti, Sudhakar
    Oztekin, Alparslan
    APPLIED THERMAL ENGINEERING, 2013, 50 (01) : 143 - 151
  • [3] MODELING PHASE-CHANGE MATERIALS HEAT CAPACITY USING ARTIFICIAL NEURAL NETWORKS
    Delcroix, B.
    Kummert, M.
    Daoud, A.
    HEAT TRANSFER RESEARCH, 2018, 49 (07) : 617 - 631
  • [4] SOLUTIONS FOR HEAT OR COLD DISCHARGE FROM ENCAPSULATED PHASE-CHANGE MATERIALS
    Vitorino, Nuno
    Abrantes, Joao C. C.
    Frade, Jorge R.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2013, 64 (06) : 421 - 435
  • [5] Theoretical Profile for Heat Capacity Peaks of Phase-Change Materials
    Medved, Igor
    Trnik, Anton
    THERMOPHYSICS 2018, 2018, 1988
  • [6] Fast nanoscale heat-flux modulation with phase-change materials
    van Zwol, P. J.
    Joulain, K.
    Ben Abdallah, P.
    Greffet, J. J.
    Chevrier, J.
    PHYSICAL REVIEW B, 2011, 83 (20)
  • [7] Nanoengineered materials for liquid–vapour phase-change heat transfer
    H. Jeremy Cho
    Daniel J. Preston
    Yangying Zhu
    Evelyn N. Wang
    Nature Reviews Materials, 2
  • [8] HEAT TRANSFER ENHANCEMENT IN PHASE-CHANGE HEAT EXCHANGERS
    Chatys, Rafal
    Malcho, Milan
    Orman, Lukasz J.
    AVIATION, 2014, 18 (01) : 40 - 43
  • [9] Enhancement of phase-change heat transfer
    Bergles, AE
    CONVECTIVE FLOW AND POOL BOILING, 1999, : 23 - 31
  • [10] Phase-change heat transfer in microsystems
    Cheng, Ping
    Wu, Hui-Ying
    Hong, Fang-Jun
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2007, 129 (02): : 101 - 108