Chemical freeze-out parameters via a nonperturbative QCD approach

被引:1
|
作者
Lu, Yi [1 ,2 ,3 ]
Chen, Muyang [4 ]
Bai, Zhan [1 ,2 ,3 ,7 ]
Gao, Fei [5 ]
Yu-xin Liu [1 ,2 ,3 ,6 ]
机构
[1] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
[2] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[4] Hunan Normal Univ, Dept Phys, Changsha 410081, Peoples R China
[5] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[6] Peking Univ, Ctr High Energy Phys, Beijing 100871, Peoples R China
[7] Chinese Acad Sci, Inst Theoret Phys, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
DYSON-SCHWINGER EQUATIONS; PHASE-DIAGRAM; HADRON-PRODUCTION; CRITICAL-POINT; COLLISIONS; MODEL; DECONFINEMENT; TEMPERATURE;
D O I
10.1103/PhysRevD.105.034012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
By analyzing the calculated baryon number susceptibility ratios chi(B)(1)/chi(B)(2) and chi(B)(3)/chi(B)(1) in a two-flavor system via the Dyson-Schwinger equation approach of QCD, we determine the chemical freeze-out temperature and baryon chemical potential in cases of both thermodynamic limit and finite size. We calculate the center-of-mass energy dependence of the chi(B)(4)/chi(B)(2)(kappa sigma(2)) at the freeze-out line and find an excellent agreement with experimental data when taking into account the finite size effect. Our calculations indicate that the kappa sigma(2) exhibits a nonmonotonic behavior in the lower collision energy region. We also predict that the collision energy dependence of chi(B)(6)/chi(B)(2) is nonmonotonic.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Chemical freeze-out parameters via a functional renormalization group approach
    Shao, Jun-xiang
    Fu, Wei-jie
    Liu, Yu-xin
    PHYSICAL REVIEW D, 2024, 109 (03)
  • [2] Lattice QCD results on chemical freeze-out
    Ratti, Claudia
    17TH INTERNATIONAL CONFERENCE ON STRANGENESS IN QUARK MATTER (SQM 2017), 2018, 171
  • [3] Chemical freeze-out and the QCD phase transition temperature
    Braun-Munzinger, P
    Stachel, J
    Wetterich, C
    PHYSICS LETTERS B, 2004, 596 (1-2) : 61 - 69
  • [4] Hadron yields, the chemical freeze-out and the QCD phase diagram
    Andronic, A.
    Braun-Munzinger, P.
    Redlich, K.
    Stachel, J.
    16TH INTERNATIONAL CONFERENCE ON STRANGENESS IN QUARK MATTER (SQM2016), 2017, 779
  • [5] THERMAL FREEZE-OUT VERSUS CHEMICAL FREEZE-OUT REEXAMINED
    Prorok, Dariusz
    ACTA PHYSICA POLONICA B, 2009, 40 (10): : 2825 - 2842
  • [6] Influence of strange quarks on the QCD phase diagram and chemical freeze-out
    Tawfik, A
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2005, 31 (06) : S1105 - S1110
  • [8] Status of chemical freeze-out
    Cleymans, J.
    Oeschler, H.
    Redlich, K.
    Wheaton, S.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2006, 32 (12) : S165 - S169
  • [9] Freeze-out Conditions from Lattice QCD
    Mukherjee, Swagato
    NUCLEAR PHYSICS A, 2013, 904 : 873C - 876C
  • [10] Energy and centrality dependence of chemical freeze-out thermodynamics parameters
    Yu, N.
    Liu, F.
    Wu, K.
    PHYSICAL REVIEW C, 2014, 90 (02):