Fuzzy Kalman Filter Modeling Based on Evolving Clustering of Experimental Data

被引:0
|
作者
Pires, Danubia Soares [1 ]
de Oliveira Serra, Ginalber Luiz [1 ]
机构
[1] Fed Inst Maranhao, Dept Electroelect, Lab Computat Intelligence Appl Technol, Sao Luis, Brazil
关键词
IDENTIFICATION; SYSTEM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A methodology to system identification based on Evolving Fuzzy Kalman Filter, is proposed in this paper. The mathematical formulation using an evolving Takagi-Sugeno (TS) structure is presented: the offline Gustafson Kessel (GK) Algorithm is used to a window of initial data set; after that, an evolving GK algorithm estimate the antecedent parameters. A fuzzy version OKID (Observer/Kalman Filter Identification) algorithm is formulated to obtain the state matrix, the input influence matrix, the output influence matrix, the direct transmission matrix, and the Kalman gain matrix, recursively, composing the consequent parameters. Computational results from the estimation of parameters of nonlinear dynamic system show the efficiency and applicability of the proposed methodology.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] An approach for fuzzy Kalman filter modeling based on evolving clustering of experimental data
    Pires, Danubia
    Serra, Ginalber
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (02) : 1819 - 1834
  • [2] Methodology for modeling fuzzy Kalman filters of minimum realization from evolving clustering of experimental data
    Pires, Danubia S.
    Serra, Ginalber L. O.
    [J]. ISA TRANSACTIONS, 2020, 105 (105) : 1 - 23
  • [3] Fuzzy Kalman Filter Modeling Approach from Experimental Data
    Pires, Danubia Soares
    de Oliveira Serra, Ginalber Luiz
    [J]. ICINCO: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 1, 2016, : 318 - 326
  • [4] Methodology for Evolving Fuzzy Kalman Filter Identification
    Pires, Danubia Soares
    de Oliveira Serra, Ginalber Luiz
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2019, 17 (03) : 793 - 800
  • [5] State-Space Recursive Fuzzy Modeling Approach Based on Evolving Data Clustering
    Torres L.M.M.
    de Oliveira Serra G.L.
    [J]. Journal of Control, Automation and Electrical Systems, 2018, 29 (04) : 426 - 440
  • [6] Fuzzy rules extraction based on soft clustering and Kalman filter method
    Guo, Haixiang
    Zhu, Kejun
    Li, Jinling
    [J]. Jisuanji Gongcheng/Computer Engineering, 2005, 31 (18): : 191 - 193
  • [7] Fuzzy modeling based on fuzzy clustering and kalman filtering with SVD matrix decomposition
    Wang, H. W.
    Ma, G. F.
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 905 - 908
  • [8] Gas Turbine Modeling Based on Fuzzy Clustering Algorithm Using Experimental Data
    Benyounes, Abdelhafid
    Hafaifa, Ahmed
    Guemana, Mouloud
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2016, 30 (01) : 29 - 51
  • [9] Interval type-2 evolving fuzzy Kalman filter for processing of unobservable spectral components from uncertain experimental data
    Gomes, Daiana Caroline dos Santos
    Serra, Ginalber Luiz de Oliveira
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (02): : 637 - 669
  • [10] Evolving Fuzzy Kalman Filter: A Black-Box Modeling Approach Applied to Rocket Trajectory Forecasting
    Pires, Danubia Soares
    de Oliveira Serra, Ginalber Luiz
    [J]. FUZZY INFORMATION PROCESSING, NAFIPS 2018, 2018, 831 : 336 - 347