Prototype-based Models for the Supervised Learning of Classification Schemes

被引:1
|
作者
Biehl, Michael [1 ]
Hammer, Barbara [2 ]
Villmann, Thomas [3 ]
机构
[1] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, POB 407, NL-9700 AK Groningen, Netherlands
[2] Bielefeld Univ, CITEC Ctr Excellence, Univ Str 21-23, D-33594 Bielefeld, Germany
[3] Univ Appl Sci, Computat Intelligence Grp, Technikumpl 17, D-09648 Mittweida, Germany
来源
ASTROINFORMATICS | 2017年 / 12卷 / S325期
关键词
miscellaneous; methods: data analysis; techniques: miscellaneous; VECTOR QUANTIZATION; NEAREST;
D O I
10.1017/S1743921316012928
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An introduction is given to the use of prototype-based models in supervised machine learning. The main concept of the framework is to represent previously observed data in terms of so-called prototypes, which reflect typical properties of the data. Together with a suitable, discriminative distance or dissimilarity measure, prototypes can be used for the classification of complex, possibly high-dimensional data. We illustrate the framework in terms of the popular Learning Vector Quantization (LVQ). Most frequently, standard Euclidean distance is employed as a distance measure. We discuss how LVQ can be equipped with more general dissimilarites. Moreover, we introduce relevance learning as a tool for the data-driven optimization of parameterized distances.
引用
收藏
页码:129 / 138
页数:10
相关论文
共 50 条
  • [1] Prototype-based models in machine learning
    Biehl, Michael
    Hammer, Barbara
    Villmann, Thomas
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COGNITIVE SCIENCE, 2016, 7 (02) : 92 - 111
  • [2] Prototype-based classification
    Perner, Petra
    [J]. APPLIED INTELLIGENCE, 2008, 28 (03) : 238 - 246
  • [3] Hyperparameter learning in probabilistic prototype-based models
    Schneider, Petra
    Biehl, Michael
    Hammer, Barbara
    [J]. NEUROCOMPUTING, 2010, 73 (7-9) : 1117 - 1124
  • [4] Prototype-based classification
    Petra Perner
    [J]. Applied Intelligence, 2008, 28 : 238 - 246
  • [5] Learning interpretable kernelized prototype-based models
    Hofmann, Daniela
    Schleif, Frank-Michael
    Paassen, Benjamin
    Hammer, Barbara
    [J]. NEUROCOMPUTING, 2014, 141 : 84 - 96
  • [6] Adaptive prototype-based fuzzy classification
    Cebron, Nicolas
    Berthold, Michael R.
    [J]. FUZZY SETS AND SYSTEMS, 2008, 159 (21) : 2806 - 2818
  • [7] Semi-supervised remote sensing image scene classification with prototype-based consistency
    Yang LI
    Zhang LI
    Zi WANG
    Kun WANG
    Qifeng YU
    [J]. Chinese Journal of Aeronautics, 2024, (02) : 459 - 470
  • [8] Prototype-Based Classification of Dissimilarity Data
    Hammer, Barbara
    Mokbel, Bassam
    Schleif, Frank-Michael
    Zhu, Xibin
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS X: IDA 2011, 2011, 7014 : 185 - 197
  • [9] A hierarchical prototype-based approach for classification
    Gu, Xiaowei
    Ding, Weiping
    [J]. INFORMATION SCIENCES, 2019, 505 : 325 - 351
  • [10] Semi-supervised remote sensing image scene classification with prototype-based consistency
    Li, Yang
    Li, Zhang
    Wang, Zi
    Wang, Kun
    Yu, Qifeng
    [J]. CHINESE JOURNAL OF AERONAUTICS, 2024, 37 (02) : 459 - 470