NONPARAMETRIC REGRESSION FUNCTION ESTIMATION FOR ERRORS-IN-VARIABLES MODELS WITH VALIDATION DATA

被引:9
|
作者
Du, Lilun [1 ,2 ]
Zou, Changliang [1 ,2 ]
Wang, Zhaojun [1 ,2 ]
机构
[1] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[2] Nankai Univ, Dept Stat, Sch Math Sci, Tianjin 300071, Peoples R China
关键词
Asymptotic normality; local linear regression; measurement error; trigonometric series; SIMULATION-EXTRAPOLATION; COVARIABLES MODELS; INFERENCE;
D O I
10.5705/ss.2009.047
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops an estimation approach for nonparametric regression analysis with measurement error in covariates, assuming the availability of independent validation data on them, in addition to primary data on the response variable and surrogate covariates. Without specifying any error model structure between the surrogate and true covariates, we propose an estimator that integrates local linear regression and Fourier transformation methods. Under mild conditions, the consistency of the proposed estimator is established and the convergence rate is also obtained. Numerical examples show that it performs well in applications.
引用
收藏
页码:1093 / 1113
页数:21
相关论文
共 50 条