MCNet: An Efficient CNN Architecture for Robust Automatic Modulation Classification

被引:151
|
作者
Huynh-The, Thien [1 ,2 ]
Hua, Cam-Hao [3 ]
Pham, Quoc-Viet [4 ]
Kim, Dong-Seong [1 ,2 ]
机构
[1] Kumoh Natl Inst Technol, ICT Convergence Res Ctr, Gumi 39177, South Korea
[2] Kumoh Natl Inst Technol, Dept IT Convergence Engn, Gumi 39177, South Korea
[3] Kyung Hee Univ, Dept Comp Sci & Engn, Global Campus, Yongin 446701, South Korea
[4] Pusan Natl Univ, Res Inst Comp Informat & Commun, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
Automatic modulation classification; deep learning; convolutional neural network; skip connection;
D O I
10.1109/LCOMM.2020.2968030
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This letter proposes a cost-efficient convolutional neural network (CNN) for robust automatic modulation classification (AMC) deployed for cognitive radio services of modern communication systems. The network architecture is designed with several specific convolutional blocks to concurrently learn the spatiotemporal signal correlations via different asymmetric convolution kernels. Additionally, these blocks are associated with skip connections to preserve more initially residual information at multi-scale feature maps and prevent the vanishing gradient problem. In the experiments, MCNet reaches the overall 24-modulation classification rate of 93.59% at 20 dB SNR on the well-known DeepSig dataset.
引用
收藏
页码:811 / 815
页数:5
相关论文
共 50 条
  • [1] A Lightweight CNN Architecture for Automatic Modulation Classification
    Wang, Zhongyong
    Sun, Dongzhe
    Gong, Kexian
    Wang, Wei
    Sun, Peng
    [J]. ELECTRONICS, 2021, 10 (21)
  • [2] Dense Layer Dropout Based CNN Architecture for Automatic Modulation Classification
    Dileep, P.
    Das, Dibyajyoti
    Bora, Prabin Kumar
    [J]. 2020 TWENTY SIXTH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC 2020), 2020,
  • [3] Deep Learning-Based Automatic Modulation Classification Using Robust CNN Architecture for Cognitive Radio Networks
    Abd-Elaziz, Ola Fekry
    Abdalla, Mahmoud
    Elsayed, Rania A.
    [J]. SENSORS, 2023, 23 (23)
  • [4] Deep cascading network architecture for robust automatic modulation classification
    Weng, Lintianran
    He, Yuan
    Peng, Jianhua
    Zheng, Jianchao
    Li, Xinyu
    [J]. NEUROCOMPUTING, 2021, 455 : 308 - 324
  • [5] Exploiting a low-cost CNN with skip connection for robust automatic modulation classification
    Thien Huynh-The
    Hua, Cam-Hao
    Kim, Jae-Woo
    Kim, Seung-Hwan
    Kim, Dong-Seong
    [J]. 2020 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2020,
  • [6] Automatic Modulation Classification Based on Bispectrum and CNN
    Li, Yongbin
    Shao, Gaoping
    Wang, Bin
    [J]. PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 311 - 316
  • [7] A More Efficient CNN Architecture for Plankton Classification
    Yan, Jiangpeng
    Li, Xiu
    Cui, Zuoying
    [J]. COMPUTER VISION, PT III, 2017, 773 : 198 - 208
  • [8] Sparsely Connected CNN for Efficient Automatic Modulation Recognition
    Tunze, Godwin Brown
    Huynh-The, Thien
    Lee, Jae-Min
    Kim, Dong-Seong
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 15557 - 15568
  • [9] VT-MCNet: High-Accuracy Automatic Modulation Classification Model Based on Vision Transformer
    Dao, Thien-Thanh
    Noh, Dae-Il
    Pham, Quoc-Viet
    Hasegawa, Mikio
    Sekiya, Hiroo
    Hwang, Won-Joo
    [J]. IEEE COMMUNICATIONS LETTERS, 2024, 28 (01) : 98 - 102
  • [10] Automatic Modulation Classification: A Deep Architecture Survey
    Thien Huynh-The
    Quoc-Viet Pham
    Toan-Van Nguyen
    Thanh Thi Nguyen
    Ruby, Rukhsana
    Zeng, Ming
    Kim, Dong-Seong
    [J]. IEEE ACCESS, 2021, 9 : 142950 - 142971