Climate change threatens terrestrial water storage over the Tibetan Plateau

被引:170
|
作者
Li, Xueying [1 ]
Long, Di [1 ]
Scanlon, Bridget R. [2 ]
Mann, Michael E. [3 ]
Li, Xingdong [1 ]
Tian, Fuqiang [1 ]
Sun, Zhangli [1 ]
Wang, Guangqian [1 ]
机构
[1] Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing, Peoples R China
[2] Univ Texas Austin, Bur Econ Geol, Jackson Sch Geosci, Austin, TX USA
[3] Penn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
基金
中国国家自然科学基金;
关键词
MASS; LEVEL; TEMPERATURE; VARIABILITY; GLACIERS; DROUGHT; VOLUME; MODEL; BASIN; LAKES;
D O I
10.1038/s41558-022-01443-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Tibetan Plateau is an important source region of freshwater for large parts of Asia's population. Here the authors quantify past and future terrestrial water-storage changes and find a large net loss in this region, with the Amu Darya and Indus basins as the most vulnerable hotspots. Terrestrial water storage (TWS) over the Tibetan Plateau, a major global water tower, is crucial in determining water transport and availability to a large downstream Asian population. Climate change impacts on historical and future TWS changes, however, are not well quantified. Here we used bottom-up and top-down approaches to quantify a significant TWS decrease (10.2 Gt yr(-1)) over the Tibetan Plateau in recent decades (2002-2017), reflecting competing effects of glacier retreat, lake expansion and subsurface water loss. Despite the weakened trends in projected TWS, it shows large declines under a mid-range carbon emissions scenario by the mid-twenty-first century. Excess water-loss projections for the Amu Darya and Indus basins present a critical water resource threat, indicating declines of 119% and 79% in water-supply capacity, respectively. Our study highlights these two hotspots as being at risk from climate change, informing adaptation strategies for these highly vulnerable regions.
引用
收藏
页码:801 / +
页数:15
相关论文
共 50 条
  • [1] Climate change threatens terrestrial water storage over the Tibetan Plateau
    Xueying Li
    Di Long
    Bridget R. Scanlon
    Michael E. Mann
    Xingdong Li
    Fuqiang Tian
    Zhangli Sun
    Guangqian Wang
    Nature Climate Change, 2022, 12 : 801 - 807
  • [2] Response of terrestrial water storage and its change to climate change in the endorheic Tibetan Plateau
    Wang, Liuming
    Wang, Junxiao
    Li, Mengyao
    Wang, Lachun
    Li, Xingong
    Zhu, Liping
    JOURNAL OF HYDROLOGY, 2022, 612
  • [3] Responses of terrestrial water storage to climate variation in the Tibetan Plateau
    Wang, Jiarong
    Chen, Xi
    Hu, Qi
    Liu, Jintao
    JOURNAL OF HYDROLOGY, 2020, 584
  • [4] Spatial Difference of Terrestrial Water Storage Change and Lake Water Storage Change in the Inner Tibetan Plateau
    Qiao, Baojin
    Nie, Bingkang
    Liang, Changmao
    Xiang, Longwei
    Zhu, Liping
    REMOTE SENSING, 2021, 13 (10)
  • [5] Terrestrial water storage regime and its change in the endorheic Tibetan Plateau
    Wang, Liuming
    Wang, Junxiao
    Wang, Lachun
    Zhu, Liping
    Li, Xingong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 815
  • [6] Attributing the Impacts of Vegetation and Climate Changes on the Spatial Heterogeneity of Terrestrial Water Storage over the Tibetan Plateau
    Han, Yuna
    Zuo, Depeng
    Xu, Zongxue
    Wang, Guoqing
    Peng, Dingzhi
    Pang, Bo
    Yang, Hong
    REMOTE SENSING, 2023, 15 (01)
  • [7] Lake water storage change estimation and its linkage with terrestrial water storage change in the northeastern Tibetan Plateau
    Li Ya-wei
    Wang Yu-zhe
    Xu Min
    Kang Shi-chang
    JOURNAL OF MOUNTAIN SCIENCE, 2021, 18 (07) : 1737 - 1747
  • [8] Lake water storage change estimation and its linkage with terrestrial water storage change in the northeastern Tibetan Plateau
    Ya-wei Li
    Yu-zhe Wang
    Min Xu
    Shi-chang Kang
    Journal of Mountain Science, 2021, 18 : 1737 - 1747
  • [9] Lake water storage change estimation and its linkage with terrestrial water storage change in the northeastern Tibetan Plateau
    LI Ya-wei
    WANG Yu-zhe
    XU Min
    KANG Shi-chang
    Journal of Mountain Science, 2021, 18 (07) : 1737 - 1747
  • [10] Increasing lake water storage on the Inner Tibetan Plateau under climate change
    Jia, Binghao
    Wang, Longhuan
    Xie, Zhenghui
    SCIENCE BULLETIN, 2023, 68 (05) : 489 - 493