Tractography segmentation using a hierarchical Dirichlet processes mixture model

被引:44
|
作者
Wang, Xiaogang [1 ]
Grimson, W. Eric L. [2 ]
Westin, Carl-Fredrik [3 ]
机构
[1] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[2] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[3] Harvard Univ, Sch Med, Dept Radiol, Lab Math Imaging,Brigham & Womens Hosp, Boston, MA 02215 USA
关键词
Tractography segmentation; Diffusion tensor imaging; Hierarchical Dirichlet process; Gibbs sampling; NEURONAL FIBER PATHWAYS;
D O I
10.1016/j.neuroimage.2010.07.050
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In this paper, we propose a new nonparametric Bayesian framework to cluster white matter fiber tracts into bundles using a hierarchical Dirichlet processes mixture (HDPM) model. The number of clusters is automatically learned driven by data with a Dirichlet process (DP) prior instead of being manually specified. After the models of bundles have been learned from training data without supervision, they can be used as priors to cluster/classify fibers of new subjects for comparison across subjects. When clustering fibers of new subjects, new clusters can be created for structures not observed in the training data. Our approach does not require computing pairwise distances between fibers and can cluster a huge set of fibers across multiple subjects. We present results on several data sets, the largest of which has more than 120,000 fibers. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:290 / 302
页数:13
相关论文
共 50 条
  • [1] Tractography Segmentation Using a Hierarchical Dirichlet Processes Mixture Model
    Wang, Xiaogang
    Grimson, W. Eric L.
    Westin, Carl-Fredrik
    [J]. INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2009, 5636 : 101 - +
  • [2] Speech Acoustic Unit Segmentation Using Hierarchical Dirichlet Processes
    Torbati, Amir Hossein Harati Nejad
    Picone, Joseph
    Sobel, Marc
    [J]. 14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 637 - 641
  • [3] Video annotation using hierarchical Dirichlet process mixture model
    Wu, Roung-Shiunn
    Li, Po-Chun
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 3040 - 3048
  • [4] Tree Structured Dirichlet Processes for Hierarchical Morphological Segmentation
    Can, Burcu
    Manandhar, Suresh
    [J]. COMPUTATIONAL LINGUISTICS, 2018, 44 (02) : 349 - 374
  • [5] Image Segmentation Using Inverted Dirichlet Mixture Model and Spatial Information
    Singh, Jai Puneet
    Bouguila, Nizar
    [J]. 2018 IEEE CANADIAN CONFERENCE ON ELECTRICAL & COMPUTER ENGINEERING (CCECE), 2018,
  • [6] Dirichlet Gaussian mixture model: Application to image segmentation
    Thanh Minh Nguyen
    Wu, Q. M. Jonathan
    [J]. IMAGE AND VISION COMPUTING, 2011, 29 (12) : 818 - 828
  • [7] Hyperspectral Image Segmentation Using The Dirichlet Mixture Models
    Sigirci, Ibrahim Onur
    Bilgin, Gokhan
    [J]. 2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 983 - 986
  • [8] Hierarchical Dirichlet processes
    Teh, Yee Whye
    Jordan, Michael I.
    Beal, Matthew J.
    Blei, David M.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (476) : 1566 - 1581
  • [9] Dynamic hierarchical Dirichlet processes topic model using the power prior approach
    Kuhwan Jeong
    Yongdai Kim
    [J]. Journal of the Korean Statistical Society, 2021, 50 : 860 - 873
  • [10] Dynamic hierarchical Dirichlet processes topic model using the power prior approach
    Jeong, Kuhwan
    Kim, Yongdai
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2021, 50 (03) : 860 - 873