Multivalue second derivative collocation methods

被引:3
|
作者
Abdi, A. [1 ,2 ,5 ]
Conte, D. [3 ]
D'Ambrosio, R. [4 ]
Paternoster, B. [3 ]
机构
[1] Univ Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
[2] Univ Tabriz, Res Dept Computat Algorithms & Math Models, Tabriz, Iran
[3] Univ Salerno, Dept Math, Fisciano, Italy
[4] Univ LAquila, Dept Informat Engn & Comp Sci & Math, LAquila, Italy
[5] Martin Luther Univ Halle Wittenberg, Inst Math, Halle, Germany
关键词
Stiff problems; Multivalue methods; Collocation methods; Second derivative methods; General linear methods; GENERAL LINEAR METHODS; 2-STEP; ORDER; IMPLEMENTATION; CONSTRUCTION;
D O I
10.1016/j.apnum.2022.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce multivalue second derivative collocation methods for the numerical solution of stiff ordinary differential equations, also arising from the spatial discretization of time dependent partial differential equations. The uniform order of convergence of the methods is discussed and continuous order conditions are derived. We construct methods of orders up to eight with desirable stability properties. Numerical experiments are given, validating the theoretical results and illustrating the efficiency and capability of the proposed methods in solving stiff problems without any reduction of the order of convergence, unlike A-stable Runge-Kutta methods. (C) 2022 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:344 / 355
页数:12
相关论文
共 50 条
  • [1] Multivalue mixed collocation methods
    Conte, Dajana
    D'Ambrosio, Raffaele
    D'Arienzo, Maria Pia
    Paternoster, Beatrice
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 409
  • [2] Variable stepsize multivalue collocation methods
    Moradi, A.
    D'Ambrosio, R.
    Paternoster, B.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 190 : 1 - 14
  • [3] Singly diagonally implicit multivalue collocation methods
    Conte, Dajana
    D'Ambrosio, Raffaele
    D'Arienzo, Maria Pia
    Paternoster, Beatrice
    [J]. 2ND INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCE AND ENGINEERING (MACISE 2020), 2020, : 65 - 68
  • [4] ON THE STABILITY OF SPLINE-COLLOCATION METHODS OF MULTIVALUE TYPE
    FUCHS, PM
    [J]. BIT, 1987, 27 (03): : 374 - 388
  • [5] Multivalue Almost Collocation Methods with Diagonal Coefficient Matrix
    Conte, Dajana
    D'Ambrosio, Raffaele
    D'Arienzo, Maria Pia
    Paternoster, Beatrice
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT I, 2020, 12249 : 135 - 148
  • [6] Multivalue Collocation Methods for Ordinary and Fractional Differential Equations
    Cardone, Angelamaria
    Conte, Dajana
    D'Ambrosio, Raffaele
    Paternoster, Beatrice
    [J]. MATHEMATICS, 2022, 10 (02)
  • [7] Multivalue collocation methods free from order reduction
    D'Ambrosio, Raffaele
    Paternoster, Beatrice
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 387
  • [8] A-STABLE SPLINE-COLLOCATION METHODS OF MULTIVALUE TYPE
    FUCHS, PM
    [J]. BIT, 1989, 29 (02): : 295 - 310
  • [9] Second derivative two-step collocation methods for ordinary differential equations
    Fazeli, S.
    Hojjati, G.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 514 - 527
  • [10] Collocation Methods for Second Order Systems
    Moreno-Martin, Siro
    Ros, Lluis
    Celaya, Enric
    [J]. ROBOTICS: SCIENCE AND SYSTEM XVIII, 2022,