Transference on some non-convolution operators from euclidean spaces to torus

被引:1
|
作者
Zhang, Yandan [3 ]
Fan, Dashan [2 ]
Chen, Jiecheng [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310017, Zhejiang, Peoples R China
[2] Univ Wisconsin, Dept Math, Milwaukee, WI 53711 USA
[3] Zhejiang Univ Sci & Technol, Dept Math, Hangzhou 310023, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
n-Torus; de Leeuw's theorem; Commutator; MULTIPLIER OPERATORS; COMMUTATOR;
D O I
10.1007/s11401-010-0624-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors prove the certain de Leeuw type theorems on some non-convolution operators, and give some applications on certain known results.
引用
收藏
页码:59 / 68
页数:10
相关论文
共 50 条
  • [1] Transference on some non-convolution operators from euclidean spaces to torus
    Yandan Zhang
    Dashan Fan
    Jiecheng Chen
    [J]. Chinese Annals of Mathematics, Series B, 2011, 32 : 59 - 68
  • [2] Transference on Some Non-convolution Operators from Euclidean Spaces to Torus
    Yandan ZHANG1 Dashan FAN2 Jiecheng CHEN3 1Department of Mathematics
    [J]. Chinese Annals of Mathematics(Series B), 2011, 32 (01) : 59 - 68
  • [3] Growth of hypercyclic entire functions for some non-convolution operators
    de la Rosa, Maria Pilar Romero
    [J]. CONCRETE OPERATORS, 2023, 10 (01):
  • [4] HYPERCYCLIC BEHAVIOR OF SOME NON-CONVOLUTION OPERATORS ON H(CN)
    Muro, Santiago
    Pinasco, Damian
    Savransky, Martin
    [J]. JOURNAL OF OPERATOR THEORY, 2017, 77 (01) : 39 - 59
  • [5] Supercyclic and hypercyclic non-convolution operators
    Petersson, Henrik
    [J]. JOURNAL OF OPERATOR THEORY, 2006, 55 (01) : 135 - 151
  • [6] Fixed points and orbits of non-convolution operators
    Leon-Saavedra, Fernando
    Romero-de la Rosa, Pilar
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2014, : 1 - 5
  • [7] Fixed points and orbits of non-convolution operators
    Fernando León-Saavedra
    Pilar Romero-de la Rosa
    [J]. Fixed Point Theory and Applications, 2014
  • [8] Dynamics of non-convolution operators and holomorphy types
    Muro, Santiago
    Pinasco, Damian
    Savransky, Martin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 468 (02) : 622 - 641
  • [9] COMMON HYPERCYCLIC FUNCTIONS FOR MULTIPLES OF CONVOLUTION AND NON-CONVOLUTION OPERATORS
    Bernal-Gonzalez, Luis
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (11) : 3787 - 3795
  • [10] Remarks on a result about hypercyclic non-convolution operators
    Fernández, G
    Hallack, AA
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 309 (01) : 52 - 55