Australian Fire Emissions of Carbon Monoxide Estimated by Global Biomass Burning Inventories: Variability and Observational Constraints

被引:10
|
作者
Desservettaz, Maximilien J. [1 ,2 ,3 ]
Fisher, Jenny A. [1 ]
Luhar, Ashok K. [2 ]
Woodhouse, Matthew T. [2 ]
Bukosa, Beata [4 ]
Buchholz, Rebecca R. [5 ]
Wiedinmyer, Christine [6 ]
Griffith, David W. T. [1 ]
Krummel, Paul B. [2 ]
Jones, Nicholas B. [1 ]
Deutscher, Nicholas M. [1 ]
Greenslade, Jesse W. [1 ,7 ]
机构
[1] Univ Wollongong, Sch Earth Atmospher & Life Sci, Ctr Atmospher Chem, Wollongong, NSW, Australia
[2] Climate Sci Ctr, CSIRO Oceans Atmosphere, Aspendale, Vic, Australia
[3] Cyprus Inst, Climate & Atmosphere Res Ctr, Nicosia, Cyprus
[4] Natl Inst Water & Atmospher Res, Wellington, New Zealand
[5] Natl Ctr Atmospher Res, Atmospher Chem Observat Modeling Lab, Boulder, CO USA
[6] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[7] Bur Meteorol, Melbourne, Vic, Australia
基金
美国国家航空航天局;
关键词
fire; emission; inventory; evaluation; TRACE GASES; ATMOSPHERIC CHEMISTRY; AIR-QUALITY; MODEL DESCRIPTION; SAVANNA FIRES; SURFACE OZONE; CAPE GRIM; CLIMATE; TRANSPORT; CO2;
D O I
10.1029/2021JD035925
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Australian fires are a primary driver of variability in Australian atmospheric composition and contribute significantly to regional and global carbon budgets. However, biomass burning emissions from Australia remain highly uncertain. In this work, we use surface in situ, ground-based total column and satellite total column observations to evaluate the ability of two global models (GEOS-Chem and ACCESS-UKCA) and three global biomass burning emission inventories (FINN1.5, GFED4s, and QFED2.4) to simulate carbon monoxide (CO) in the Australian atmosphere. We find that emissions from northern Australia savanna fires are substantially lower in FINN1.5 than in the other inventories. Model simulations driven by FINN1.5 are unable to reproduce either the magnitude or the variability of observed CO in northern Australia. The remaining two inventories perform similarly in reproducing the observed variability, although the larger emissions in QFED2.4 combined with an existing high bias in the southern hemisphere background lead to large CO biases. We therefore recommend GFED4s as the best option of the three for global modeling studies with focus on Australia or the Southern Hemisphere. Near fresh fire emissions, the higher resolution ACCESS-UKCA model is better able to simulate surface CO than GEOS-Chem, while GEOS-Chem captures more of the observed variability in the total column and remote surface air measurements. We also show that existing observations in Australia can only partially constrain global model estimates of biomass burning. Continuous measurements in fire-prone parts of Australia are needed, along with updates to global biomass burning inventories that are validated with Australian data.
引用
收藏
页数:24
相关论文
共 29 条
  • [1] Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power
    Kaiser, J. W.
    Heil, A.
    Andreae, M. O.
    Benedetti, A.
    Chubarova, N.
    Jones, L.
    Morcrette, J. -J.
    Razinger, M.
    Schultz, M. G.
    Suttie, M.
    van der Werf, G. R.
    [J]. BIOGEOSCIENCES, 2012, 9 (01) : 527 - 554
  • [2] Relative contributions of biomass burning emissions and atmospheric transport to carbon monoxide interannual variability
    Szopa, S.
    Hauglustaine, D. A.
    Ciais, P.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (18)
  • [3] New Inventories of Global Carbon Dioxide Emissions through Biomass Burning in 2001-2020
    Shiraishi, Tomohiro
    Hirata, Ryuichi
    Hirano, Takashi
    [J]. REMOTE SENSING, 2021, 13 (10)
  • [4] HYDROCARBON AND CARBON-MONOXIDE EMISSIONS FROM BIOMASS BURNING IN BRAZIL
    GREENBERG, JP
    ZIMMERMAN, PR
    HEIDT, L
    POLLOCK, W
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1984, 89 (ND1) : 1350 - 1354
  • [5] Interannual variability in global biomass burning emissions from 1997 to 2004
    van der Werf, G. R.
    Randerson, J. T.
    Giglio, L.
    Collatz, G. J.
    Kasibhatla, P. S.
    Arellano, A. F., Jr.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 : 3423 - 3441
  • [6] Correlation of aerosol and carbon monoxide at 45°S:: Evidence of biomass burning emissions
    Jones, NB
    Rinsland, CP
    Liley, JB
    Rosen, J
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (04) : 709 - 712
  • [7] Methane Emissions in Boreal Forest Fire Regions: Assessment of Five Biomass-Burning Emission Inventories Based on Carbon Sensing Satellites
    Zhao, Siyan
    Wang, Li
    Shi, Yusheng
    Zeng, Zhaocheng
    Nath, Biswajit
    Niu, Zheng
    [J]. REMOTE SENSING, 2023, 15 (18)
  • [8] An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power
    Vermote, Eric
    Ellicott, Evan
    Dubovik, Oleg
    Lapyonok, Tatyana
    Chin, Mian
    Giglio, Louis
    Roberts, Gareth J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
  • [9] Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide
    Mu, M.
    Randerson, J. T.
    van der Werf, G. R.
    Giglio, L.
    Kasibhatla, P.
    Morton, D.
    Collatz, G. J.
    DeFries, R. S.
    Hyer, E. J.
    Prins, E. M.
    Griffith, D. W. T.
    Wunch, D.
    Toon, G. C.
    Sherlock, V.
    Wennberg, P. O.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
  • [10] Global biomass burning fuel consumption and emissions at 500 m spatialresolution based on the Global Fire Emissions Database (GFED)
    van Wees, Dave
    van der Werf, Guido R.
    Randerson, James T.
    Rogers, Brendan M.
    Chen, Yang
    Veraverbeke, Sander
    Giglio, Louis
    Morton, Douglas C.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2022, 15 (22) : 8411 - 8437