On the degrees of freedom in shape-restricted regression

被引:0
|
作者
Meyer, M [1 ]
Woodroofe, M
机构
[1] Univ Georgia, Dept Stat, Athens, GA 30602 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
来源
ANNALS OF STATISTICS | 2000年 / 28卷 / 04期
关键词
asymptotic distribution; bias reduction; divergence; effective dimension; simulation; Stein's identity; variance estimation;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For the problem of estimating a regression function, mu say, subject to shape constraints, like monotonicity or convexity it is argued that the divergence of the maximum likelihood estimator provides a useful measure of the effective dimension of the model. Inequalities are derived for the expected mean squared error of the maximum likelihood estimator and the expected residual sum of squares. These generalize equalities from the case of linear regression. As an application, it is shown that the maximum likelihood estimator of the error variance sigma (2) is asymptotically normal with mean sigma (2) and variance 2 sigma (2)/n. For monotone regression, it is shown that the maximum likelihood estimator of mu attains the optimal rate of convergence, and a bias correction to the maximum likelihood estimator of sigma (2) is derived.
引用
收藏
页码:1083 / 1104
页数:22
相关论文
共 50 条
  • [1] Nonparametric Shape-Restricted Regression
    Guntuboyina, Adityanand
    Sen, Bodhisattva
    [J]. STATISTICAL SCIENCE, 2018, 33 (04) : 568 - 594
  • [2] INFERENCE USING SHAPE-RESTRICTED REGRESSION SPLINES
    Meyer, Mary C.
    [J]. ANNALS OF APPLIED STATISTICS, 2008, 2 (03): : 1013 - 1033
  • [3] Calibrating Classification Probabilities with Shape-Restricted Polynomial Regression
    Wang, Yongqiao
    Li, Lishuai
    Dang, Chuangyin
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (08) : 1813 - 1827
  • [4] Shape-restricted nonparametric regression with overall noisy measurements
    Pflug, Georg Ch
    Wets, Roger J. -B.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (02) : 323 - 338
  • [5] A test for linear versus convex regression function using shape-restricted regression
    Meyer, MC
    [J]. BIOMETRIKA, 2003, 90 (01) : 223 - 232
  • [6] Change-point detection in a shape-restricted regression model
    Nosek, Konrad
    Szkutnik, Zbigniew
    [J]. STATISTICS, 2014, 48 (03) : 641 - 656
  • [7] Estimating α-frontier technical efficiency with shape-restricted kernel quantile regression
    Wang, Yongqiao
    Wang, Shouyang
    [J]. NEUROCOMPUTING, 2013, 101 : 243 - 251
  • [8] A note on the consistency in Bayesian shape-restricted regression with random Bernstein polynomials
    Chang, I-Shou
    Hsiung, Chao A.
    Wen, Chi-Chung
    Wu, Yuh-Jenn
    [J]. RANDOM WALK, SEQUENTIAL ANALYSIS AND RELATED TOPICS: A FESTSCHRIFT IN HONOR OF YUAN-SHIH CHOW, 2006, : 245 - +
  • [9] Change-point estimation using shape-restricted regression splines
    Liao, Xiyue
    Meyer, Mary C.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 188 : 8 - 21
  • [10] Predicting Online Item-Choice Behavior: A Shape-Restricted Regression Approach
    Nishimura, Naoki
    Sukegawa, Noriyoshi
    Takano, Yuichi
    Iwanaga, Jiro
    [J]. ALGORITHMS, 2023, 16 (09)