Markov chains, classifiers, and intrusion detection

被引:48
|
作者
Jha, S [1 ]
Tan, K [1 ]
Maxion, RA [1 ]
机构
[1] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
关键词
D O I
10.1109/CSFW.2001.930147
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a statistical anomaly detection algorithm based on Markov chains. Our algorithm can be directly applied for intrusion detection by discovering anomalous activities. Our framework for constructing anomaly detectors is very general and can be used, by other researchers for constructing Markov-chain-based anomaly detectors. We also present performance metrics for evaluating the effectiveness of anomaly detectors. Extensive experimental results clearly demonstrate the effectiveness of our algorithm. We discuss several future directions for research based on the framework presented in this paper.
引用
收藏
页码:206 / 219
页数:14
相关论文
共 50 条
  • [1] Markov chains in network intrusion detection
    Hixon, R
    Gruenbacher, DA
    [J]. PROCEEDINGS FROM THE FIFTH IEEE SYSTEMS, MAN AND CYBERNETICS INFORMATION ASSURANCE WORKSHOP, 2004, : 432 - 433
  • [2] Intrusion detection based on system calls and homogeneous Markov chains
    Tian Xinguang1
    2. Inst. of Computing Technology
    [J]. Journal of Systems Engineering and Electronics, 2008, (03) : 598 - 605
  • [3] Intrusion detection based on system calls and homogeneous Markov chains
    Tian Xinguang
    Duan Miyi
    Sun Chunlai
    Li Wenfa
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2008, 19 (03) : 598 - 605
  • [4] Best hybrid classifiers for intrusion detection
    Kholfi, Sanaa
    Habib, Muhammad
    Aljahdali, Sultan
    [J]. JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2006, 6 (5-6) : S299 - S307
  • [5] Bayesian Classifiers in Intrusion Detection Systems
    Johan, Mardini-Bovea
    Emiro, De-La-Hoz-Franco
    Diego, Molina-Estren
    Ariza-Colpas, Paola
    Andres, Ortiz
    Julio, Ortega
    Cardenas, Cesar A. R.
    Collazos-Morales, Carlos
    [J]. MACHINE LEARNING FOR NETWORKING (MLN 2019), 2020, 12081 : 379 - 391
  • [6] An Empirical Comparison of Classifiers to Analyze Intrusion Detection
    Aggarwal, Preeti
    Sharma, Sudhir Kumar
    [J]. 2015 5TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION TECHNOLOGIES ACCT 2015, 2015, : 446 - 450
  • [7] Intrusion detection using ensemble of SVM classifiers
    Xiao, Haijun
    Hong, Fan
    Zhang, Zhaoli
    Liao, Junguo
    [J]. FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 4, PROCEEDINGS, 2007, : 45 - 49
  • [8] Ensemble Classifiers for Network Intrusion Detection System
    Zainal, Anazida
    Maarof, Mohd Aizaini
    Shamsuddin, Siti Mariyam
    [J]. JOURNAL OF INFORMATION ASSURANCE AND SECURITY, 2009, 4 (03): : 217 - 225
  • [9] Support vector classifiers and network intrusion detection
    Mill, J
    Inoue, A
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS, 2004, : 407 - 410
  • [10] Intelligent Bayesian classifiers in network intrusion detection
    Bosin, A
    Dessì, N
    Pes, B
    [J]. INNOVATIONS IN APPLIED ARTIFICIAL INTELLIGENCE, 2005, 3533 : 445 - 447