Transverse Mode-Encoded Quantum Gate on a Silicon Photonic Chip

被引:4
|
作者
Feng, Lan-Tian [1 ,2 ]
Zhang, Ming [3 ,4 ]
Xiong, Xiao [1 ,2 ]
Liu, Di [1 ,2 ]
Cheng, Yu-Jie [1 ,2 ]
Jing, Fang-Ming [1 ,2 ]
Qi, Xiao-Zhuo [1 ,2 ]
Chen, Yang [1 ,2 ]
He, De-Yong [1 ,2 ]
Guo, Guo-Ping [1 ,2 ]
Guo, Guang-Can [1 ,2 ]
Dai, Dao-Xin [3 ,4 ]
Ren, Xi-Feng [1 ,2 ]
机构
[1] Univ Sci & Technol China, CAS, Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Peoples R China
[3] Zhejiang Univ, Ctr Opt & Electromagnet Res, State Key Lab Modern Opt Instrumentat, Zhejiang Prov Key Lab Sensing Technol, Zijingang Campus, Hangzhou 310058, Peoples R China
[4] Zhejiang Univ, Ningbo Res Inst, Ningbo 315100, Peoples R China
基金
中国国家自然科学基金;
关键词
ON-CHIP; COMPACT; COUPLER; SWITCH;
D O I
10.1103/PhysRevLett.128.060501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As an important degree of freedom (d.o.f.) in photonic integrated circuits, the orthogonal transverse mode provides a promising and flexible way to increase communication capability, for both classical and quantum information processing. To construct large-scale on-chip multimode multi-d.o.f.s quantum systems, a transverse mode-encoded controlled-NOT (CNOT) gate is necessary. Here, with the help of our new transverse mode-dependent directional coupler and attenuator, we demonstrate the first multimode implementation of a 2-qubit quantum gate. The ability of the gate is demonstrated by entangling two separated transverse mode qubits with an average fidelity of 0.89 +/- 0.02 and the achievement of 10 standard deviations of violations in the quantum nonlocality verification. In addition, a fidelity of 0.82 +/- 0.01 is obtained from quantum process tomography used to completely characterize the CNOT gate. Our work paves the way for universal transverse mode-encoded quantum operations and large-scale multimode multi-d.o.f.s quantum systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Gaussian quantum metrology for mode-encoded parameters
    Sorelli, Giacomo
    Gessner, Manuel
    Treps, Nicolas
    Walschaers, Mattia
    [J]. NEW JOURNAL OF PHYSICS, 2024, 26 (07):
  • [2] On-chip path encoded photonic quantum Toffoli gate
    MENG LI
    CHU LI
    YANG CHEN
    LANTIAN FENG
    LINYU YAN
    QIAN ZHANG
    JUEMING BAO
    BIHENG LIU
    XIFENG REN
    JIANWEI WANG
    SHUFENG WANG
    YUNAN GAO
    XIAOYONG HU
    QIHUANG GONG
    YAN LI
    [J]. Photonics Research, 2022, (07) - 1542
  • [3] On-chip path encoded photonic quantum Toffoli gate
    Li, Meng
    Li, Chu
    Chen, Yang
    Feng, Lan-Tian
    Yan, Linyu
    Zhang, Qian
    Bao, Jueming
    Liu, Bi-Heng
    Ren, Xi-Feng
    Wang, Jianwei
    Wang, Shufeng
    Gao, Yunan
    Hu, Xiaoyong
    Gong, Qihuang
    Li, Yan
    [J]. PHOTONICS RESEARCH, 2022, 10 (07) : 1533 - 1542
  • [4] On-chip path encoded photonic quantum Toffoli gate
    MENG LI
    CHU LI
    YANG CHEN
    LAN-TIAN FENG
    LINYU YAN
    QIAN ZHANG
    JUEMING BAO
    BI-HENG LIU
    XI-FENG REN
    JIANWEI WANG
    SHUFENG WANG
    YUNAN GAO
    XIAOYONG HU
    QIHUANG GONG
    YAN LI
    [J]. Photonics Research, 2022, 10 (07) : 1533 - 1542
  • [5] Supercompact Photonic Quantum Logic Gate on a Silicon Chip
    Zhang, Ming
    Feng, Lantian
    Li, Ming
    Chen, Yang
    Zhang, Long
    He, Deyong
    Guo, Guoping
    Guo, Guangcan
    Ren, Xifeng
    Dai, Daoxin
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (13)
  • [6] Ground state solver on a silicon quantum photonic chip
    Santagati, R.
    Wang, J.
    Paesani, S.
    Gentile, A. A.
    Bonneau, D.
    Silverstone, J. W.
    Morley-Short, S.
    Zhou, X.
    Shadbolt, P. J.
    Wiebe, N.
    Miki, S.
    Yamashita, T.
    Fujiwara, M.
    Sasaki, M.
    Terai, H.
    Tanner, M. G.
    Natarajan, C. M.
    Hadfield, R. H.
    Tew, D.
    O'Brien, J. L.
    Thompson, M. G.
    [J]. 2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [7] Coupling of a whispering gallery mode to a silicon chip with photonic crystal
    Zhuang, Yuyang
    Kumazaki, Hajime
    Fujii, Shun
    Imamura, Riku
    Daud, Nurul Ashikin Binti
    Ishida, Rammaru
    Chen, Heming
    Tanabe, Takasumi
    [J]. OPTICS LETTERS, 2019, 44 (23) : 5731 - 5734
  • [8] Implementing a Multi-Qubit Quantum Phase Gate Encoded by Photonic Qubit
    Lu Pei-Min
    Song Jie
    Xia Yan
    [J]. CHINESE PHYSICS LETTERS, 2010, 27 (03)
  • [9] Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip
    Paesani, S.
    Gentile, A. A.
    Santagati, R.
    Wang, J.
    Wiebe, N.
    Tew, D. P.
    O'Brien, J. L.
    Thompson, M. G.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (10)
  • [10] Silicon photonic transmitter for polarization-encoded quantum key distribution
    Ma, Chaoxuan
    Sacher, Wesley D.
    Tang, Zhiyuan
    Mikkelsen, Jared C.
    Yang, Yisu
    Xu, Feihu
    Thiessen, Torrey
    Lo, Hoi-Kwong
    Poon, Joyce K. S.
    [J]. OPTICA, 2016, 3 (11): : 1274 - 1278