Cone of recession and unboundedness of convex functions

被引:6
|
作者
Obuchowska, WT [1 ]
Murty, KG
机构
[1] SUNY Coll Fredonia, Dept Math & Comp Sci, Fredonia, NY 14063 USA
[2] Univ Michigan, Dept Ind & Operat Engn, Ann Arbor, MI 48109 USA
关键词
convex programming; cone of recession; unboundedness;
D O I
10.1016/S0377-2217(00)00136-3
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the problem of determining whether or not a convex function f(x) is bounded below over R-n. Our focus is on investigating the properties of the vectors in the cone of recession 0(+) f of f(x) which are related to the unboundedness of the function. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:409 / 415
页数:7
相关论文
共 50 条
  • [1] Computing the recession cone of a convex upper image via convex projection
    Kovacova, Gabriela
    Ulus, Firdevs
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2024, 89 (04) : 975 - 994
  • [2] SYMMETRIC CONE MONOTONE FUNCTIONS AND SYMMETRIC CONE CONVEX FUNCTIONS
    Chang, Yu-Lin
    Chen, Jein-Shan
    Pan, Shaohua
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (03) : 499 - 512
  • [3] REPRESENTATION THEOREM FOR A CONVEX CONE OF QUASI CONVEX FUNCTIONS
    JOHANSEN, S
    [J]. MATHEMATICA SCANDINAVICA, 1972, 30 (02) : 297 - 312
  • [4] MINIMAL PAIRS OF CONVEX SETS WHICH SHARE A RECESSION CONE
    Grzybowski, Jerzy
    Urbanski, Ryszard
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (02) : 1049 - 1068
  • [5] Cone superadditivity of discrete convex functions
    Kobayashi, Yusuke
    Murota, Kazuo
    Weismantel, Robert
    [J]. MATHEMATICAL PROGRAMMING, 2012, 135 (1-2) : 25 - 44
  • [6] Cone superadditivity of discrete convex functions
    Yusuke Kobayashi
    Kazuo Murota
    Robert Weismantel
    [J]. Mathematical Programming, 2012, 135 : 25 - 44
  • [7] Continuity of cone-convex functions
    Kuwano, Issei
    Tanaka, Tamaki
    [J]. OPTIMIZATION LETTERS, 2012, 6 (08) : 1847 - 1853
  • [8] EXTREMAL ELEMENTS OF CONVEX CONE AN OF FUNCTIONS
    RAKESTRA.RM
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (05): : 789 - &
  • [9] Continuity of cone-convex functions
    Issei Kuwano
    Tamaki Tanaka
    [J]. Optimization Letters, 2012, 6 : 1847 - 1853
  • [10] ON CHECKING UNBOUNDEDNESS OF FUNCTIONS
    CAMERINI, PM
    CHUNG, SJ
    MURTY, KG
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1991, 16 (2B) : 255 - 262