The asymptotic rank of metric spaces

被引:11
|
作者
Wenger, Stefan [1 ]
机构
[1] Univ Illinois, Dept Math, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
Isoperimetric inequalities; asymptotic rank; Euclidean rank; non-positive curvature; Hadamard spaces; cone type inequalities; ISOPERIMETRIC-INEQUALITIES; FILLING-INVARIANTS; LOCAL-STRUCTURE; INFINITY; CURRENTS;
D O I
10.4171/CMH/223
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we define and study a notion of asymptotic rank for metric spaces and show in our main theorem that for a large class of spaces, the asymptotic rank is characterized by the growth of the higher isoperimetric tilling functions. For a proper, cocompact, simply connected geodesic metric space of non-positive curvature in the sense of Alexandrov the asymptotic rank equals its Euclidean rank.
引用
收藏
页码:247 / 275
页数:29
相关论文
共 50 条