Sharp LP-bounds for a perturbation of Burkholder's Martingale Transform

被引:3
|
作者
Boros, Nicholas [1 ]
Janakiraman, Prabhu [1 ]
Volberg, Alexander [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
INEQUALITIES;
D O I
10.1016/j.crma.2011.01.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {d(k)}(k >= 1) be a real martingale difference in L-p[0, 1), where 1 < p < infinity, and {epsilon(k)}(k >= 1) subset of (+/- 1). We obtain the following generalization of Burkholder's famous result. If tau is an element of [-1/2, 1/2] and n is an element of Z(+) then parallel to Sigma(n)(k=1)(epsilon(k)d(k), tau d(k))parallel to(Lp((0,1),R2)) <= ((p* - 1)(2) + iota(2))(1/2) parallel to Sigma(n)(k=1)dk parallel to(Lp((0,1),R)) where ((p* - 1)(2) + tau(2))(1/2) is sharp and p* - 1 = max{p - 1, 1/p - 1}. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:303 / 307
页数:5
相关论文
共 50 条
  • [1] Sharp Lp-bounds for a Small Perturbation of Burkholder's Martingale Transform
    Boros, Nicholas
    Janakiraman, Prabhu
    Volberg, Alexander
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (02) : 751 - 773
  • [2] SHARP LP-BOUNDS FOR THE MARTINGALE MAXIMAL FUNCTION
    Osekowski, Adam
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2018, 70 (01) : 121 - 138
  • [3] Perturbation of Burkholder's martingale transform and Monge-Ampere equation
    Boros, Nicholas
    Janakiraman, Prabhu
    Volberg, Alexander
    [J]. ADVANCES IN MATHEMATICS, 2012, 230 (4-6) : 2198 - 2234
  • [4] INEQUALITY FOR BURKHOLDER'S MARTINGALE TRANSFORM
    Ivanisvili, Paata
    [J]. ANALYSIS & PDE, 2015, 8 (04): : 765 - 806
  • [5] Lp-bounds for the Beurling-Ahlfors transform
    Banuelos, Rodrigo
    Janakiraman, Prabhu
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (07) : 3603 - 3612
  • [6] On extremal distributions and sharp Lp-bounds for sums of multilinear forms
    De La Peña, VH
    Ibragimov, R
    Sharakhmetov, S
    [J]. ANNALS OF PROBABILITY, 2003, 31 (02): : 630 - 675
  • [7] Sharp maximal Lp-bounds for continuous martingales and their differential subordinates
    Osekowski, Adam
    Zuo, Yahui
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [8] SHARP LOCAL LOWER Lp-BOUNDS FOR DYADIC-LIKE MAXIMAL OPERATORS
    Melas, Antonios D.
    Nikolidakis, Eleftherios
    Stavropoulos, Theodoros
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (09) : 3171 - 3181
  • [9] Lp-bounds for spherical maximal operators on Zn
    Magyar, A
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 1997, 13 (02) : 307 - 317
  • [10] LP-BOUNDS FOR THE KLEIN-GORDON EQUATION
    MARKOVSKII, AI
    [J]. DIFFERENTIAL EQUATIONS, 1987, 23 (11) : 1330 - 1335