Incomplete statistics: nonextensive generalizations of statistical mechanics

被引:71
|
作者
Wang, QPA [1 ]
机构
[1] Inst Super Mat Mans, F-72000 Le Mans, France
关键词
D O I
10.1016/S0960-0779(00)00113-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Statistical mechanics is generalized on the basis of incomplete information theory for inexact or incomplete probability distribution. An incomplete normalization Sigma (w)(i=1), p(i)(q) = 1 with positive real q is proposed and, thanks to the q-deformed logarithmic function used as information measure I-q(N) = N1-q-1/1-q, leads to a nonextensive entropy: [GRAPHICS] The resulting incomplete statistical mechanics is proved to have the same theoretical characteristics as the Tsallis one for complete probability distributions. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1431 / 1437
页数:7
相关论文
共 50 条
  • [1] Equilibrium statistical mechanics for incomplete nonextensive statistics
    Parvan, A. S.
    Biro, T. S.
    [J]. PHYSICS LETTERS A, 2011, 375 (03) : 372 - 378
  • [2] On multivariate generalizations of the central limit theorem consistent with nonextensive statistical mechanics
    Umarov, Sabir
    Tsallis, Constantino
    [J]. COMPLEXITY, METASTABILITY AND NONEXTENSIVITY, 2007, 965 : 34 - +
  • [3] Nonextensive statistics and incomplete information
    Q.A. Wang
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 26 (3): : 357 - 368
  • [4] Nonextensive statistics and incomplete information
    Wang, QA
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2002, 26 (03): : 357 - 368
  • [5] Duality in nonextensive statistical mechanics
    Karlin, IV
    Grmela, M
    Gorban, AN
    [J]. PHYSICAL REVIEW E, 2002, 65 (03):
  • [6] Foundations of nonextensive statistical mechanics
    Abe, Sumiyoshi
    [J]. CHAOS, NONLINEARITY, COMPLEXITY: THE DYNAMICAL PARADIGM OF NATURE, 2006, 206 : 53 - 71
  • [7] BEC in nonextensive statistical mechanics
    Salasnich, L
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (04): : 405 - 409
  • [8] Nonextensive statistical mechanics and economics
    Tsallis, C
    Anteneodo, C
    Borland, L
    Osorio, R
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 324 (1-2) : 89 - 100
  • [9] Incomplete nonextensive statistics and the zeroth law of thermodynamics
    Huang Zhi-Fu
    Ou Cong-Jie
    Chen Jin-Can
    [J]. CHINESE PHYSICS B, 2013, 22 (04)
  • [10] Incomplete nonextensive statistics and the zeroth law of thermodynamics
    黄志福
    欧聪杰
    陈金灿
    [J]. Chinese Physics B, 2013, 22 (04) : 144 - 147