The Equivariant Second Yamabe Constant

被引:6
|
作者
Henry, Guillermo [1 ,2 ]
Madani, Farid [3 ]
机构
[1] Univ Buenos Aires, FCEyN, Dept Matemat, Ciudad Univ,Pab 1,C1428EHA, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[3] Goethe Univ Frankfurt, Inst Math, Robert Mayer Str 10, D-60325 Frankfurt, Germany
关键词
Equivariant Yamabe constants; Yamabe equation; Nodal solutions; NODAL SOLUTIONS; SCALAR CURVATURE; EQUATIONS;
D O I
10.1007/s12220-017-9978-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a closed Riemannian manifold of dimension and a subgroup G of the isometry group, we define and study the G-equivariant second Yamabe constant and obtain some results on the existence of G-invariant nodal solutions of the Yamabe equation.
引用
收藏
页码:3747 / 3774
页数:28
相关论文
共 50 条
  • [1] The Equivariant Second Yamabe Constant
    Guillermo Henry
    Farid Madani
    The Journal of Geometric Analysis, 2018, 28 : 3747 - 3774
  • [2] Second Yamabe constant on Riemannian products
    Henry, Guillermo
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 114 : 260 - 275
  • [3] THE YAMABE EQUIVARIANT PROBLEM
    HEBEY, E
    VAUGON, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (11): : 863 - 866
  • [4] THE EQUIVARIANT YAMABE PROBLEM
    HEBEY, E
    VAUGON, M
    BULLETIN DES SCIENCES MATHEMATIQUES, 1993, 117 (02): : 241 - 286
  • [5] Surgery and equivariant Yamabe invariant
    Sung, CY
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2006, 24 (03) : 271 - 287
  • [6] Equivariant CR Yamabe problem
    Ho, Pak Tung
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024,
  • [7] Equivariant Yamabe problem with boundary
    Ho, Pak Tung
    Shin, Jinwoo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (01)
  • [8] Equivariant Yamabe problem with boundary
    Pak Tung Ho
    Jinwoo Shin
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [9] Singular Yamabe Metrics by Equivariant Reduction
    Ali Hyder
    Angela Pistoia
    Yannick Sire
    The Journal of Geometric Analysis, 2021, 31 : 12525 - 12547
  • [10] Singular Yamabe Metrics by Equivariant Reduction
    Hyder, Ali
    Pistoia, Angela
    Sire, Yannick
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 12525 - 12547