Enhanced Thermal Stability of Low-Temperature Processed Carbon-Based Perovskite Solar Cells by a Combined Antisolvent/Polymer Deposition Method

被引:3
|
作者
Aung, Soe Ko Ko [1 ,2 ]
Vijayan, Anuja [2 ]
Boschloo, Gerrit [2 ]
Seetawan, Tosawat [1 ]
机构
[1] Sakon Nakhon Rajabhat Univ, Res & Dev Inst, Ctr Excellence Alternat Energy, Dept Phys,Fac Sci & Technol,Opt Res Lab, Sakon Nakhon 47000, Thailand
[2] Uppsala Univ, Dept Chem Angstrom, Lab Phys Chem, SE-75120 Uppsala, Sweden
关键词
carbon electrodes; lead halide perovskites; poly(3-hexylthiophene); poly(triarylamine); HOLE-CONDUCTOR-FREE; TRANSPORT; EFFICIENT; PHOTOLUMINESCENCE; PASSIVATION; PERFORMANCE; LENGTHS; FILMS;
D O I
10.1002/ente.202200177
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Low-temperature processed carbon-based perovskite solar cells have received great attention due to low-cost, high stability, and simple preparation processes that can be employed in large-scale manufacturing. Carbon paste is deposited by techniques such as doctor blading or screen printing. However, solvents from this paste can damage the perovskite or underlying layers resulting in poor performance of solar cells. Furthermore, carbon is not an ideal hole-selective contact. To overcome these issues, the antisolvent treatment is combined with the deposition of a polymeric hole conductor. Specifically, poly(3-hexylthiophene) (P3HT), added into the chlorobenzene antisolvent, improves perovskite morphology and reduces interfacial carrier recombination. As a result, the power conversion efficiency (PCE) of solar cells with the device structure SnO2/MAPbI(3)/P3HT/carbon increases to 12.16% from 10.6% of pristine devices without P3HT, using pure antisolvent. For poly(triarylamine) hole conductor in the same method, PCE improves only slightly to 11.1%. After 260 h of thermal stress at 82 degrees C, the P3HT-additive devices improve PCE up to 13.2% in air and maintain 91% of their initial efficiency over 800 h.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Reduced hysteresis and enhanced air stability of low-temperature processed carbon-based perovskite solar cells by surface modification
    Aung, Soe Ko Ko
    Vijayan, Anuja
    Karimipour, Masoud
    Seetawan, Tosawat
    Boschloo, Gerrit
    ELECTROCHIMICA ACTA, 2023, 443
  • [2] Low-temperature carbon-based electrodes in perovskite solar cells
    Bogachuk, Dmitry
    Zouhair, Salma
    Wojciechowski, Konrad
    Yang, Bowen
    Babu, Vivek
    Wagner, Lukas
    Xu, Bo
    Lim, Jaekeun
    Mastroianni, Simone
    Pettersson, Henrik
    Hagfeldt, Anders
    Hinsch, Andreas
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (11) : 3880 - 3916
  • [3] Carbon-Based Electrode Engineering Boosts the Efficiency of All Low-Temperature Processed Perovskite Solar Cells
    He, Sisi
    Qiu, Longbin
    Son, Dae-Yong
    Liu, Zonghao
    Juarez-Perez, Emilio J.
    Ono, Luis K.
    Stecker, Collin
    Qi, Yabing
    ACS ENERGY LETTERS, 2019, 4 (09) : 2032 - 2039
  • [4] Low-Temperature Processed Carbon Electrode-Based Inorganic Perovskite Solar Cells with Enhanced Photovoltaic Performance and Stability
    Xin Wu
    Feng Qi
    Fengzhu Li
    Xiang Deng
    Zhen Li
    Shengfan Wu
    Tiantian Liu
    Yizhe Liu
    Jie Zhang
    Zonglong Zhu
    Energy & Environmental Materials , 2021, (01) : 95 - 102
  • [5] Low-Temperature Processed Carbon Electrode-Based Inorganic Perovskite Solar Cells with Enhanced Photovoltaic Performance and Stability
    Xin Wu
    Feng Qi
    Fengzhu Li
    Xiang Deng
    Zhen Li
    Shengfan Wu
    Tiantian Liu
    Yizhe Liu
    Jie Zhang
    Zonglong Zhu
    Energy & Environmental Materials, 2021, 4 (01) : 95 - 102
  • [6] Low-Temperature Processed Carbon Electrode-Based Inorganic Perovskite Solar Cells with Enhanced Photovoltaic Performance and Stability
    Wu, Xin
    Qi, Feng
    Li, Fengzhu
    Deng, Xiang
    Li, Zhen
    Wu, Shengfan
    Liu, Tiantian
    Liu, Yizhe
    Zhang, Jie
    Zhu, Zonglong
    ENERGY & ENVIRONMENTAL MATERIALS, 2021, 4 (01) : 95 - 102
  • [7] Air-processed carbon-based perovskite solar cells with enhanced efficiency and stability: Effect of temperature control and using CuSCN
    Lv, Yanqi
    Jin, Yuanzeng
    Cai, Wanxian
    Zhang, Zhaobin
    Zhou, Xingfu
    Chen, Hongling
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 821
  • [8] Simultaneous enhancement in stability and efficiency of low-temperature processed perovskite solar cells
    Mahmud, Md Arafat
    Elumalai, Naveen Kumar
    Upama, Mushfika Baishakhi
    Wang, Dian
    Wright, Matthew
    Sun, Tian
    Xu, Cheng
    Haque, Faiazul
    Uddin, Ashraf
    RSC ADVANCES, 2016, 6 (89): : 86108 - 86125
  • [9] Fully low-temperature processed carbon-based perovskite solar cells using thermally evaporated cadmium sulfide as efficient electron transport layer
    Liu, Zhiyong
    Liu, Xingyue
    Sun, Bo
    Tan, Xianhua
    Ye, Haibo
    Tu, Yuxue
    Shi, Tielin
    Tang, Zirong
    Liao, Guanglan
    ORGANIC ELECTRONICS, 2019, 74 : 152 - 160
  • [10] Enhanced Efficiency and Stability of Carbon-Based Perovskite Solar Cells by Eva Interface Engineering
    Wang, Haobin
    Qiang, Yue
    Zheng, Shenshen
    Wei, Peng
    Xie, Yahong
    ADVANCED MATERIALS INTERFACES, 2022, 9 (10)