Dynamic data-driven application systems for empty houses, contaminat tracking, and wildland fireline prediction

被引:0
|
作者
Douglas, Craig C. [1 ,2 ]
Bansal, Divya [1 ]
Beezley, Jonathan D. [3 ]
Bennethum, Lynn S. [3 ]
Chakraborty, Soham [1 ]
Coen, Janice L. [4 ]
Efendiev, Yalchin [5 ]
Ewing, Richard E. [5 ]
Hatcher, Jay [1 ]
Iskandarani, Mohamed [6 ]
Johnson, Christopher R. [7 ]
Li, Deng [1 ]
Kim, Minjeong [3 ]
Lodder, Robert A. [8 ]
Mandel, Jan [3 ]
Qin, Guan [5 ]
Vodacek, Anthony [9 ]
机构
[1] Univ Kentucky, Dept Comp Sci, 773 Anderson Hall, Lexington, KY 40506 USA
[2] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
[3] Univ Colorado, Hlth Sci Ctr, Dept Math Sci, Denver 80217, CO USA
[4] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[5] Texas A&M Univ, Inst Comp Sci, College Stn, TX 77843 USA
[6] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA
[7] Univ Utah, Scientif Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[8] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA
[9] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA
来源
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We describe three different dynamic data-driven applications systems (DDDAS): an empty house, a contaminant identification and tracking, and a wildland fire. Each has something in common with all of the rest and can use some common tools. Each DDDAS is quite complicated in comparison to a traditional static input simulation that is run with large numbers of inputs instead of one longer run that is self-correcting.
引用
收藏
页码:255 / +
页数:4
相关论文
共 50 条
  • [1] Prediction of spatiotemporal dynamic systems by data-driven reconstruction
    Ren, Hu-Hu
    Fan, Man-Hong
    Bai, Yu-Long
    Ma, Xiao-Ying
    Zhao, Jun-Hao
    [J]. Chaos, Solitons and Fractals, 2024, 185
  • [2] Reinforcement learning-based prediction approach for distributed Dynamic Data-Driven Application Systems
    Lin, Szu-Yin
    [J]. INFORMATION TECHNOLOGY & MANAGEMENT, 2015, 16 (04): : 313 - 326
  • [3] Reinforcement learning-based prediction approach for distributed Dynamic Data-Driven Application Systems
    Szu-Yin Lin
    [J]. Information Technology and Management, 2015, 16 : 313 - 326
  • [4] Hybrid Computational Steering for Dynamic Data-Driven Application Systems
    Han, Junyi
    Brooke, John
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 407 - 417
  • [5] A dynamic data-driven forecast prediction methodology for photovoltaic power systems
    Kapros, Zoltan
    [J]. IDOJARAS, 2018, 122 (03): : 345 - 360
  • [6] Data-Driven Optimal Tracking with Constrained Approximate Dynamic Programming for Servomotor Systems
    Chakrabarty, Ankush
    Danielson, Claus
    Wang, Yebin
    [J]. 2020 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA), 2020, : 352 - 357
  • [7] The distributed strategy for asynchronous observations in data-driven wildland fire spread prediction
    Zha, Mengxia
    Wang, Zheng
    Ji, Jie
    Zhu, Jiping
    [J]. INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2024, 33 (07)
  • [8] Research on the dynamic data-driven application system architecture for flight delay prediction
    Chen, Haiyan
    Wang, Jiandong
    Feng, Lirong
    [J]. Journal of Software, 2012, 7 (02) : 263 - 268
  • [9] A dynamic data-driven application simulation framework
    Douglas, CC
    Efeirdiev, Y
    [J]. DCABES 2004, PROCEEDINGS, VOLS, 1 AND 2, 2004, : 293 - 297
  • [10] A Review of Data-Driven Discovery for Dynamic Systems
    North, Joshua S.
    Wikle, Christopher K.
    Schliep, Erin M.
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2023, 91 (03) : 464 - 492