Solution of quantum eigenvalue problems by means of algebraic consistency conditions

被引:0
|
作者
de la Pena, L. [1 ]
Cetto, A. M. [1 ]
Valdes-Hernandez, A. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 04510, DF, Mexico
关键词
quantum eigenvalues; algebraic method; ladder operators; LADDER OPERATORS; FACTORIZATION METHOD;
D O I
10.1088/1361-6404/ac2ecd
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We present a simple algebraic procedure that can be applied to solve a range of quantum eigenvalue problems without the need to know the solution of the Schrodinger equation. The procedure, presented with a pedagogical purpose, is based on algebraic consistency conditions that must be satisfied by the eigenvalues of a couple of operators proper of the problem. These operators can be either bilinear forms of the raising and lowering operators appropriate to the problem, or else auxiliary operators constructed by resorting to the factorization of the Hamiltonian. Different examples of important quantum-mechanical textbook problems are worked out to exhibit the clarity and simplicity of the algebraic procedure for determining the spectrum of eigenvalues without knowing the eigenfunctions. For this reason the material presented may be particularly useful for undergraduate students or young physicists.
引用
收藏
页数:14
相关论文
共 50 条