q-index on braided non-commutative spheres

被引:5
|
作者
Gurevich, D
Leclercq, R
Saponov, P
机构
[1] Univ Valenciennes, ISTV, Dept Math, F-59304 Valenciennes, France
[2] Inst High Energy Phys, Theory Dept, Protvino 142281, Russia
关键词
braided (quantum) sphere; projective module; Cayley-Hamilton identity; non-commutative index; braided Casimir element;
D O I
10.1016/j.geomphys.2004.07.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To some Yang-Baxter braidings of Hecke type we assign algebras called braided non-commutative spheres. For any such algebra, we introduce and compute a q-analog of the standard pairing Ind : K-0(A) x K-0(A) -> Z called a non-commutative index. Unlike the standard non-commutative index, our q-analog is based on the so-called categorical trace specific for a braided category in which the algebra in question is represented. (c) 2004 Published by Elsevier B.V.
引用
收藏
页码:392 / 420
页数:29
相关论文
共 50 条
  • [1] On non-commutative Minkowski spheres
    Stacho, Laszlo L.
    Werner, Wend
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2012, 20 (02): : 159 - 169
  • [2] Non-commutative spheres and the AdS/CFT correspondence
    Jevicki, A
    Mihailescu, M
    Ramgoolam, S
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (10):
  • [3] A group theoretical approach to quantum theories on commutative and non-commutative spheres
    Odaka, K
    Sakoda, S
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 691 - 694
  • [4] Dirac monopoles from the Matsumoto non-commutative spheres
    Brzezinski, T
    Sitarz, A
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 791 - 794
  • [5] From index theory to non-commutative geometry
    Teleman, N
    SYMETRIES QUANTIQUES: LXIVTH SESSION OF THE LES HOUCHES SUMMER SCHOOL, 1998, : 787 - 844
  • [6] Non-commutative automorphisms of bounded non-commutative domains
    McCarthy, John E.
    Timoney, Richard M.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (05) : 1037 - 1045
  • [7] Testing non-commutative QED, constructing non-commutative MHD
    Guralnik, Z
    Jackiw, R
    Pi, SY
    Polychronakos, AP
    PHYSICS LETTERS B, 2001, 517 (3-4) : 450 - 456
  • [8] Non-commutative q-Painleve VI equation
    Doliwa, Adam
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (03)
  • [9] q and q, t-analogs of non-commutative symmetric functions
    Bergeron, N
    Zabrocki, M
    DISCRETE MATHEMATICS, 2005, 298 (1-3) : 79 - 103
  • [10] Index theory and non-commutative geometry on foliated manifolds
    Kordyukov, Yu. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2009, 64 (02) : 273 - 391