Texture segmentation using semi-supervised support vector machine

被引:0
|
作者
Sanei, S [1 ]
机构
[1] Kings Coll London, Ctr Digital Signal Proc Res, London WC2R 2LS, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Support vector machine (SVM) is used here to detect the texture boundaries. In order to do that, a cost function is initially defined based on the estimation of higher order statistics (HOS) of the intensities within small regions. K-mean algorithm is used to find the centres of the two clusters (boundary or texture) from the values of the cost function over the entire image. Then the target values are assigned to the class members based on their Euclidean distances from the centres. A supervised nonlinear SVM algorithm with RBF kernel is later used to classify the cost function values. The boundary is then identified in places where the cost function has greater values. The overall system will be semi-supervised since, the targets are not predetermined; however, the number of classes is considered as two. The results show that the algorithm performance is superior to other conventional classification system for texture segmentation. The displacement of the edges is negligible.
引用
收藏
页码:1357 / 1363
页数:7
相关论文
共 50 条
  • [1] A semi-supervised support vector machine for texture segmentation
    Sanei, S
    Lee, TKM
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 223 - 226
  • [2] Online semi-supervised support vector machine
    Liu, Ying
    Xu, Zhen
    Li, Chunguang
    INFORMATION SCIENCES, 2018, 439 : 125 - 141
  • [3] An overview on semi-supervised support vector machine
    Shifei Ding
    Zhibin Zhu
    Xiekai Zhang
    Neural Computing and Applications, 2017, 28 : 969 - 978
  • [4] An overview on semi-supervised support vector machine
    Ding, Shifei
    Zhu, Zhibin
    Zhang, Xiekai
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 (05): : 969 - 978
  • [5] SDP RELAXATION FOR SEMI-SUPERVISED SUPPORT VECTOR MACHINE
    Bai, Y. Q.
    Chen, Y.
    Niu, B. L.
    PACIFIC JOURNAL OF OPTIMIZATION, 2012, 8 (01): : 3 - 14
  • [6] Distributed online semi-supervised support vector machine
    Liu, Ying
    Xu, Zhen
    Li, Chunguang
    INFORMATION SCIENCES, 2018, 466 : 236 - 257
  • [7] The Semi-Supervised Support Vector Machine of Path Planning
    Xia, Cui Bao
    Nan, Wu
    Yong, Duan
    2013 FIFTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2013), 2013, : 1230 - 1232
  • [8] Bayesian semi-supervised learning with support vector machine
    Chakraborty, Sounak
    STATISTICAL METHODOLOGY, 2011, 8 (01) : 68 - 82
  • [9] Locality Preserving Semi-Supervised Support Vector Machine
    Ni, Tongguang
    Gu, Xiaoqing
    Wang, Shitong
    Qian, Pengjiang
    Muzic, Raymond F., Jr.
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2015, 31 (06) : 2009 - 2024
  • [10] Hypergraph regularized semi-supervised support vector machine
    Sun, Yuting
    Ding, Shifei
    Guo, Lili
    Zhang, Zichen
    INFORMATION SCIENCES, 2022, 591 : 400 - 421