A refinement of Guo's theorem concerning divisibility properties of binomial coefficients

被引:0
|
作者
Yang, Quan-Hui [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
binomial coefficients; p-adic order; divisibility properties; SUMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let s(n, k) = [GRAPHICS] /((2n - 1) [GRAPHICS] . Recently, Guo confirmed a conjecture of Z.-W. Sun by showing that s(n, k) is an integer for k = 0, 1, ..., n. Let d = (3n + 2)/ gcd(3n + 2, 2n - 1). In this paper, we prove that s(n, k) is a multiple of the odd part of d for k = 0, 1, ..., n. Furthermore, if gcd(k, n) = 1, then s(n, k) is also a multiple of n. We also show that the 2-adic order of s(n, k) is at least the sum of the digits in the binary expansion of 3n.
引用
收藏
页码:213 / 221
页数:9
相关论文
共 50 条