Two-dimensional square transition metal dichalcogenides with lateral heterostructures

被引:19
|
作者
Sun, Qilong [1 ]
Dai, Ying [1 ]
Yin, Na [1 ]
Yu, Lin [1 ]
Ma, Yandong [1 ]
Wei, Wei [1 ]
Huang, Baibiao [2 ]
机构
[1] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China
[2] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
two-dimensional; lateral heterostructure; transition metal dichalcogenide; black phosphorus; density functional theory; TOTAL-ENERGY CALCULATIONS; EPITAXIAL-GROWTH; MONOLAYER; GRAPHENE; HETEROJUNCTIONS; SEMICONDUCTORS; OPPORTUNITIES; BANDGAP;
D O I
10.1007/s12274-017-1605-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fabrication of lateral heterostructures (LHS) is promising for a wide range of next-generation devices and could sufficiently unlock the potential of two-dimensional materials. Herein, we demonstrate the design of lateral heterostructures based on new building materials, namely 1S-MX2 LHS, using first-principles calculations. 1S-MX2 LHS exhibits excellent stability, demonstrating high feasibility in the experiment. The desired bandgap opening can endure application at room temperature and was confirmed in 1S-MX2 LHS with spin-orbit coupling (SOC). A strain strategy further resulted in efficient bandgap engineering and an intriguing phase transition. We also found that black phosphorus can serve as a competent substrate to support 1S-MX2 LHS with a coveted type-II band alignment, allowing versatile functionalized bidirectional heterostructures with built-in device functions. Furthermore, the robust electronic features could be maintained in the 1S-MX2 LHS with larger components. Our findings will not only renew interest in LHS studies by enriching their categories and properties, but also highlight the promise of these lateral heterostructures as appealing materials for future integrated devices.
引用
收藏
页码:3909 / 3919
页数:11
相关论文
共 50 条
  • [1] Two-dimensional square transition metal dichalcogenides with lateral heterostructures
    Qilong Sun
    Ying Dai
    Na Yin
    Lin Yu
    Yandong Ma
    Wei Wei
    Baibiao Huang
    [J]. Nano Research, 2017, 10 : 3909 - 3919
  • [2] Size dependence in two-dimensional lateral heterostructures of transition metal dichalcogenides
    Jin, Hao
    Michaud-Rioux, Vincent
    Gong, Zhi-Rui
    Wan, Langhui
    Wei, Yadong
    Guo, Hong
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (13) : 3837 - 3842
  • [3] Lateral and vertical heterostructures in two-dimensional transition-metal dichalcogenides [Invited]
    Taghinejad, Hossein
    Eftekhar, Ali A.
    Adibi, Ali
    [J]. OPTICAL MATERIALS EXPRESS, 2019, 9 (04): : 1590 - 1607
  • [4] Straintronics in two-dimensional in-plane heterostructures of transition-metal dichalcogenides
    Wei, Wei
    Dai, Ying
    Huang, Baibiao
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (01) : 663 - 672
  • [5] Two-Dimensional Transition Metal Dichalcogenides in Biosystems
    Kalantar-zadeh, Kourosh
    Ou, Jian Zhen
    Daeneke, Torben
    Strano, Michael S.
    Pumera, Martin
    Gras, Sally L.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (32) : 5086 - 5099
  • [6] Janus two-dimensional transition metal dichalcogenides
    Zhang, Lei
    Xia, Yong
    Li, Xudong
    Li, Luying
    Fu, Xiao
    Cheng, Jiaji
    Pan, Ruikun
    [J]. JOURNAL OF APPLIED PHYSICS, 2022, 131 (23)
  • [7] Two-dimensional heterostructures based on graphene and transition metal dichalcogenides: Synthesis, transfer and applications
    Lv, Qian
    Lc, Ruitao
    [J]. CARBON, 2019, 145 : 240 - 250
  • [8] Lateral and Vertical Heterostructures of Transition Metal Dichalcogenides
    Aras, Mehmet
    Kilic, Cetin
    Ciraci, S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (03): : 1547 - 1555
  • [9] Metal-insulator transition in two-dimensional transition metal dichalcogenides
    Moon, Byoung Hee
    [J]. EMERGENT MATERIALS, 2021, 4 (04) : 989 - 998
  • [10] Metal-insulator transition in two-dimensional transition metal dichalcogenides
    Byoung Hee Moon
    [J]. Emergent Materials, 2021, 4 : 989 - 998