Fault detection of multimode non-Gaussian dynamic process using dynamic Bayesian independent component analysis

被引:50
|
作者
Xu, Ying [1 ]
Deng, Xiaogang [1 ]
机构
[1] China Univ Petr, Coll Informat & Control Engn, Qingdao 266580, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Multimode process; Dynamic data; Independent component analysis; Bayesian inference; Probability mixture model; CLASSIFICATION; DIAGNOSIS; MODEL;
D O I
10.1016/j.neucom.2016.03.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Independent component analysis (ICA) has been widely used in non-Gaussian multivariate process monitoring. However, it assumes only one normal operation mode and omits the dynamic characteristic of process data. In order to overcome the shortcomings of traditional ICA based fault detection method, an improved ICA method, referred to as dynamic Bayesian independent component analysis (DBICA), is proposed to monitor the multimode non-Gaussian dynamic process. In this method, matrix dynamic augmentation is applied to extract dynamic information from original data. Then for analyzing multi mode non-Gaussian data, Bayesian inference and ICA are combined to establish a probability mixture model. The ICA model parameters are obtained by the iterative optimization algorithm and the mode of each observation is determined by Bayesian inference simultaneously. Lastly case studies on one continuous stirring tank reactor (CSTR) simulation system and the Tennessee Eastman (TE) benchmark process are used to demonstrate the effectiveness of the proposed method. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:70 / 79
页数:10
相关论文
共 50 条
  • [1] Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis
    Fan, Jicong
    Wang, Youqing
    [J]. INFORMATION SCIENCES, 2014, 259 : 369 - 379
  • [2] Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference
    Huang, Jian
    Yan, Xuefeng
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 148 : 115 - 127
  • [3] A new fault detection method for non-Gaussian process based on robust independent component analysis
    Cai, Lianfang
    Tian, Xuemin
    [J]. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2014, 92 (06) : 645 - 658
  • [4] MULTIMODE NON-GAUSSIAN PROCESS MONITORING BASED ON LOCAL ENTROPY INDEPENDENT COMPONENT ANALYSIS
    Zhong, Na
    Deng, Xiaogang
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2017, 95 (02): : 319 - 330
  • [5] Fault detection of non-Gaussian processes based on modified independent component analysis
    Zhang, Yingwei
    Zhang, Yang
    [J]. CHEMICAL ENGINEERING SCIENCE, 2010, 65 (16) : 4630 - 4639
  • [6] Fault detection and diagnosis in a non-Gaussian process with modified kernel independent component regression
    Liu, Meizhi
    Kong, Xiangyu
    Luo, Jiayu
    Yang, Lei
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2024, 102 (02): : 781 - 802
  • [7] Bayesian method for multimode non-Gaussian process monitoring
    Ge, Zhiqiang
    Song, Zhihuan
    Zhang, Muguang
    Fu, Ruowei
    Zhu, Zhibo
    [J]. PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 4927 - 4932
  • [8] Fault Detection in Non-Gaussian Processes Based on Mutual Information Weighted Independent Component Analysis
    Jiang, Qingchao
    Wang, Bei
    Yan, Xuefeng
    [J]. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2014, 47 (01) : 60 - 68
  • [9] A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
    Rashid, Mudassir M.
    Yu, Jie
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2012, 115 : 44 - 58
  • [10] Joint Probability Density and Double-Weighted Independent Component Analysis for Multimode Non-Gaussian Process Monitoring
    Jiang, Qingchao
    Yan, Xuefeng
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (52) : 20168 - 20176