On the (r, s) domination number of a graph

被引:0
|
作者
Burger, A. P. [1 ]
van Vuuren, J. H. [1 ]
机构
[1] Univ Stellenbosch, Dept Logist, ZA-7602 Matieland, South Africa
关键词
graph domination;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose a network facility location problem is modelled by means of an undirected, simple graph G = (V, epsilon) with V = {upsilon(1), ... , upsilon(n)}. Let r = (r(1),..., r(n)) and s = (s(1), ... , s(n)) be vectors of nonnegative integers and consider the combinatorial optimization problem of locating the minimum number, gamma < r, s, G > (say), of commodities on the vertices of G such that at least s(j) commodities are located in the vicinity of (i.e. in the closed neigbourhood of) vertex v(j), with no more than r(j) commodities placed at vertex v(j) itself, for all j = 1, ... , n. In this paper we establish lower and upper bounds on the parameter gamma < r, s, G > for a general graph G. We also determine this parameter exactly for certain classes of graphs, such as paths, cycles, complete graphs, complete bipartite graphs and establish good upper bounds on gamma < r, s, G > for a class of grid graphs in the special case where r(j) = r and s(j) = s for all j = 1, ... , n.
引用
收藏
页码:257 / 271
页数:15
相关论文
共 50 条
  • [1] ON THE R-DOMINATION NUMBER OF A GRAPH
    GRIGGS, JR
    HUTCHINSON, JP
    [J]. DISCRETE MATHEMATICS, 1992, 101 (1-3) : 65 - 72
  • [2] Upper bounds on the balanced ⟨r, s⟩-domination number of a graph
    Roux, A.
    van Vuuren, J. H.
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 179 : 214 - 221
  • [3] The domination number of the king's graph
    Arshad, Muhammad
    Hayat, Sakander
    Jamil, Haziq
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06):
  • [4] The domination number of the king’s graph
    Muhammad Arshad
    Sakander Hayat
    Haziq Jamil
    [J]. Computational and Applied Mathematics, 2023, 42
  • [5] On the domination number of a graph
    Pruchnewski, A
    [J]. DISCRETE MATHEMATICS, 2002, 251 (1-3) : 129 - 136
  • [6] Private domination number of a graph
    Prasad, B. Jaya
    Chelvam, T. Tamizh
    Chellathurai, S. Robinson
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (05): : 661 - 666
  • [7] BOUNDS ON THE DOMINATION NUMBER OF A GRAPH
    BRIGHAM, RC
    DUTTON, RD
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1990, 41 (163): : 269 - 275
  • [8] The nonsplit domination number of a graph
    Kulli, VR
    Janakiram, B
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (05): : 545 - 550
  • [9] THE DISJUNCTIVE DOMINATION NUMBER OF A GRAPH
    Goddard, Wayne
    Henning, Michael A.
    McPillan, Charles A.
    [J]. QUAESTIONES MATHEMATICAE, 2014, 37 (04) : 547 - 561
  • [10] ESTIMATIONS FOR THE DOMINATION NUMBER OF A GRAPH
    FLACH, P
    VOLKMANN, L
    [J]. DISCRETE MATHEMATICS, 1990, 80 (02) : 145 - 151