QUASI-CONCAVE DENSITY ESTIMATION

被引:39
|
作者
Koenker, Roger [1 ]
Mizera, Ivan [2 ]
机构
[1] Univ Illinois, Dept Econ, Urbana, IL 61801 USA
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
来源
ANNALS OF STATISTICS | 2010年 / 38卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
Density estimation; unimodal; strongly unimodal; shape constraints; convex optimization; duality; entropy; semidefinite programming; MAXIMUM-LIKELIHOOD-ESTIMATION; PROBABILITY DENSITY;
D O I
10.1214/10-AOS814
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Maximum likelihood estimation of a log-concave probability density is formulated as a convex optimization problem and shown to have an equivalent dual formulation as a constrained maximum Shannon entropy problem. Closely related maximum Renyi entropy estimators that impose weaker concavity restrictions on the fitted density are also considered, notably a minimum Hellinger discrepancy estimator that constrains the reciprocal of the square-root of the density to be concave. A limiting form of these estimators constrains solutions to the class of quasi-concave densities.
引用
收藏
页码:2998 / 3027
页数:30
相关论文
共 50 条