Mixed finite element beam propagation method

被引:38
|
作者
Schulz, D [1 ]
Glingener, C
Bludszuweit, M
Voges, E
机构
[1] Univ Dortmund, Lehrstuhl Hochfrequenztech, D-44227 Dortmund, Germany
[2] Tech Univ Hamburg Harburg, Arbeitsbereich Halbleitertechnol, D-21073 Hamburg, Germany
关键词
beam propagation method; integrated optic devices; mixed finite elements; Pade approximant; wide angle propagation;
D O I
10.1109/50.701414
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An efficient mixed finite element (FE) beam propagation method (BPM) for three-dimensional (3-D) simulations is developed for integrated optic devices, Wide angle propagation is allowed by applying Fade approximants to the finite element operator. Mixed finite elements prevent spurious modes and accurately model waveguide corners allowing the adequate description of polarization effects. Furthermore, the finite element matrices are Hermitian leading to a unitary propagation scheme if lossless waveguides surrounded by metallic walls are assumed. In contrast to finite difference schemes energy conservation holds explicitly.
引用
收藏
页码:1336 / 1342
页数:7
相关论文
共 50 条
  • [1] Combination of beam propagation method and finite element method for optical beam propagation analysis
    Yoneta, S
    Koshiba, M
    Tsuji, Y
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1999, 17 (11) : 2398 - 2404
  • [2] Combined beam propagation and finite element method for bidirectional optical beam propagation analysis
    Yoneta, Susumu
    Koshiba, Masanori
    Tsuji, Yasuhide
    [J]. Electronics and Communications in Japan, Part II: Electronics (English translation of Denshi Tsushin Gakkai Ronbunshi), 1999, 82 (10): : 1 - 9
  • [3] Combined beam propagation and finite element method for bidirectional optical beam propagation analysis
    Yoneta, S
    Koshiba, M
    Tsuji, Y
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN PART II-ELECTRONICS, 1999, 82 (10): : 1 - 9
  • [4] Mixed finite element method for beam and frame problems
    Taylor, RL
    Filippou, FC
    Saritas, A
    Auricchio, F
    [J]. COMPUTATIONAL MECHANICS, 2003, 31 (1-2) : 192 - 203
  • [5] A mixed finite element method for beam and frame problems
    R. L. Taylor
    F. C. Filippou
    A. Saritas
    F. Auricchio
    [J]. Computational Mechanics, 2003, 31 : 192 - 203
  • [6] Finite element beam propagation method for analysis of plasmonic waveguide
    陈建军
    李兆峰
    樊中朝
    杨富华
    [J]. Chinese Optics Letters, 2008, (08) : 572 - 574
  • [7] Finite element beam propagation method for anisotropic optical waveguides
    Tsuji, Y
    Koshiba, M
    Takimoto, N
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1999, 17 (04) : 723 - 728
  • [8] Finite element beam propagation method for nonlinear optical waveguides
    Yasui, T
    Koshiba, M
    Niiyama, A
    Tsuji, Y
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN PART II-ELECTRONICS, 1999, 82 (04): : 47 - 53
  • [9] Finite element beam propagation method for analysis of plasmonic waveguide
    Chen, Jianjun
    Li, Zhaofeng
    Fan, Zhongchao
    Yang, Fuhua
    [J]. CHINESE OPTICS LETTERS, 2008, 6 (08) : 572 - 574
  • [10] Finite element beam propagation method for nonlinear optical waveguides
    Yasui, Takashi
    Koshiba, Masanori
    Niiyama, Akira
    Tsuji, Yasuhide
    [J]. Electronics and Communications in Japan, Part II: Electronics (English translation of Denshi Tsushin Gakkai Ronbunshi), 1999, 82 (04): : 47 - 53