Page curve for fermionic Gaussian states

被引:29
|
作者
Bianchi, Eugenio [1 ,2 ]
Hackl, Lucas [3 ,4 ]
Kieburg, Mario [3 ]
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[2] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
[3] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
[4] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
关键词
AVERAGE ENTROPY; STATISTICAL-MECHANICS; QUANTUM; ENTANGLEMENT; THERMALIZATION; CONJECTURE; DYNAMICS; CHAOS; PROOF;
D O I
10.1103/PhysRevB.103.L241118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In a seminal paper, Page found the exact formula for the average entanglement entropy for a pure random state. We consider the analogous problem for the ensemble of pure fermionic Gaussian states, which plays a crucial role in the context of random free Hamiltonians. Using recent results from random matrix theory, we show that the average entanglement entropy of pure random fermionic Gaussian states in a subsystem of N-A out of N degrees of freedom is given by < S-A >(G) = ( N - 1/2)Psi(2N) + (1/4 - N-A)Psi(N) + (1/2 + N-A - N)Psi(2N - 2N(A)) - 1/4 Psi(N - N-A) - N-A, where Psi is the digamma function. Its asymptotic behavior in the thermodynamic limit is given by < S-A >(G) = N(log 2 - 1)f + N(f - 1) log(1 - f) +1/2f + 1/4log (1 - f) + O(1/N), where f = N-A/N <= 1/2. Remarkably, its leading order agrees with the average over eigenstates of random quadratic Hamiltonians with number conservation, as found by Lydzba, Rigol, and Vidmar. Finally, we compute the variance in the thermodynamic limit, given by the constant lim(N ->infinity)(Delta S-A)(G)(2) = 1/2[f + f(2) + log(1 - f)].
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Eigenstate capacity and Page curve in fermionic Gaussian states
    Bhattacharjee, Budhaditya
    Nandy, Pratik
    Pathak, Tanay
    [J]. PHYSICAL REVIEW B, 2021, 104 (21)
  • [2] Mode entanglement of Gaussian fermionic states
    Spee, C.
    Schwaiger, K.
    Giedke, G.
    Kraus, B.
    [J]. PHYSICAL REVIEW A, 2018, 97 (04)
  • [3] Entanglement capacity of fermionic Gaussian states
    Huang, Youyi
    Wei, Lu
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (43)
  • [4] On the partial transpose of fermionic Gaussian states
    Eisler, Viktor
    Zimboras, Zoltan
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17
  • [5] Krylov Complexity of Fermionic and Bosonic Gaussian States
    Adhikari, Kiran
    Rijal, Adwait
    Aryal, Ashok Kumar
    Ghimire, Mausam
    Singh, Rajeev
    Deppe, Christian
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2024, 72 (05):
  • [6] Boundary effect and correlations in fermionic Gaussian states
    Ryu, Jinhyeok
    Cho, Jaeyoon
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2024, 85 (05) : 389 - 396
  • [7] Entropy Fluctuation Formulas of Fermionic Gaussian States
    Huang, Youyi
    Wei, Lu
    [J]. ANNALES HENRI POINCARE, 2023, 24 (12): : 4283 - 4342
  • [8] Symmetric Logarithmic Derivative of Fermionic Gaussian States
    Carollo, Angelo
    Spagnolo, Bernardo
    Valenti, Davide
    [J]. ENTROPY, 2018, 20 (07)
  • [9] Entropy Fluctuation Formulas of Fermionic Gaussian States
    Youyi Huang
    Lu Wei
    [J]. Annales Henri Poincaré, 2023, 24 : 4283 - 4342
  • [10] Entanglement negativity bounds for fermionic Gaussian states
    Eisert, Jens
    Eisler, Viktor
    Zimboras, Zoltan
    [J]. PHYSICAL REVIEW B, 2018, 97 (16)