Linear and non-linear response to parameter variations in a mesoscale model

被引:47
|
作者
Hacker, J. P. [1 ]
Snyder, C. [2 ]
Ha, S. -Y. [2 ]
Pocernich, M. [2 ]
机构
[1] USN, Postgrad Sch, Dept Meteorol, Monterey, CA 93943 USA
[2] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
基金
美国国家科学基金会;
关键词
ENSEMBLE KALMAN FILTER; FALSE DISCOVERY RATE; BOUNDARY-LAYER; CONVECTIVE PARAMETERIZATION; SENSITIVITY-ANALYSIS; FIELD SIGNIFICANCE; SIMULTANEOUS STATE; SYSTEM; UNCERTAINTY; PREDICTION;
D O I
10.1111/j.1600-0870.2010.00505.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Parameter uncertainty in atmospheric model forcing and closure schemes has motivated both parameter estimation with data assimilation and use of pre-specified distributions to simulate model uncertainty in short-range ensemble prediction. This work assesses the potential for parameter estimation and ensemble prediction by analysing 2 months of mesoscale ensemble predictions in which each member uses distinct, and fixed, settings for four model parameters. A space-filling parameter selection design leads to a unique parameter set for each ensemble member. An experiment to test linear scaling between parameter distribution width and ensemble spread shows the lack of a general linear response to parameters. Individual member near-surface spatial means, spatial variances and skill show that perturbed models are typically indistinguishable. Parameter-state rank correlation fields are not statistically significant, although the presence of other sources of noise may mask true correlations. Results suggest that ensemble prediction using perturbed parameters may be a simple complement to more complex model-error simulation methods, but that parameter estimation may prove difficult or costly for real mesoscale numerical weather prediction applications.
引用
收藏
页码:429 / 444
页数:16
相关论文
共 50 条