A Groenewold-VanHove theorem for S-2

被引:18
|
作者
Gotay, MJ
Grundling, H
Hurst, CA
机构
[1] UNIV NEW S WALES,DEPT PURE MATH,KENSINGTON,NSW 2033,AUSTRALIA
[2] UNIV ADELAIDE,DEPT PHYS & MATH PHYS,ADELAIDE,SA 5001,AUSTRALIA
关键词
D O I
10.1090/S0002-9947-96-01559-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there does not exist a nontrivial quantization of the Poisson algebra of the symplectic manifold S-2 which is irreducible on the su(2) subalgebra generated by the components {S-1, S-2, S-3} of the spin vector. In fact there does not exist such a quantization of the Poisson subalgebra P consisting of polynomials in {S-1, S-2, S-3}. Furthermore, we show that the maximal Poisson subalgebra of P containing {1, S-1, S-2, S-3} that can be so quantized is just that generated by {1, S-1, S-2, S-3}.
引用
收藏
页码:1579 / 1597
页数:19
相关论文
共 50 条