Bayesian and non-bayesian estimation of stress strength model for Pareto type I distribution

被引:0
|
作者
Shawky, A. I. [1 ]
Al-Gashgari, F. H.
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah 21589, Saudi Arabia
关键词
Bayesian estimator; Maximum likelihood estimator (MLE); Pareto of first kind; uniformly minimum variance unbiased estimator (UMVUE); stress strength model; LESS-THAN X); RELIABILITY ESTIMATION; BURR; P(Y-LESS-THAN-X);
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article examines statistical inference for R = P(Y < X) where X and Y are independent but not identically distributed Pareto of the first kind (Pareto (I)) random variables with same scale,parameter but different shape parameters. The Maximum likelihood, uniformly minimum variance unbiased and Bayes estimators with Gamma prior are used for this purpose. Simulation studies which compare the estimators are presented. Moreover, sensitivity of Bayes estimator to the prior parameters is considered.
引用
收藏
页码:335 / 342
页数:8
相关论文
共 50 条
  • [1] Bayesian and non-Bayesian reliability estimation of multicomponent stress-strength model for unit Weibull distribution
    Alotaibi, Refah Mohammed
    Tripathi, Yogesh Mani
    Dey, Sanku
    Rezk, Hoda Ragab
    [J]. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 1164 - 1181
  • [2] Bayesian and Non-Bayesian Reliability Estimation of Stress-Strength Model for Power-Modified Lindley Distribution
    Al-Babtain, Abdulhakim A. A.
    Elbatal, I.
    Almetwally, Ehab M. M.
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [3] Bayesian and Non-Bayesian Inference for the Generalized Pareto Distribution Based on Progressive Type II Censored Sample
    Hu, Xuehua
    Gui, Wenhao
    [J]. MATHEMATICS, 2018, 6 (12):
  • [4] BAYESIAN ESTIMATION IN PARETO TYPE-I MODEL
    Setiya, Parul
    Kumar, Vinod
    [J]. JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2013, 6 (02): : 139 - 150
  • [5] BAYESIAN AND NON-BAYESIAN ESTIMATION FOR THE PARETO PARAMETERS USING QUASI-LIKELIHOOD FUNCTION
    ASHOUR, SK
    ABDELHAFEZ, ME
    ABDELAZIZ, S
    [J]. MICROELECTRONICS AND RELIABILITY, 1994, 34 (07): : 1233 - 1237
  • [6] Multi Stress-Strength Reliability Based on Progressive First Failure for Kumaraswamy Model: Bayesian and Non-Bayesian Estimation
    Yousef, Manal M.
    Almetwally, Ehab M.
    [J]. SYMMETRY-BASEL, 2021, 13 (11):
  • [7] Non-Bayesian and Bayesian estimation for Lomax distribution under randomly censored with application
    Hasaballah, Mustafa M.
    Balogun, Oluwafemi Samson
    Bakr, M. E.
    [J]. AIP ADVANCES, 2024, 14 (02)
  • [8] Classical and Bayesian estimation of multicomponent stress–strength reliability for exponentiated Pareto distribution
    Fatma Gül Akgül
    [J]. Soft Computing, 2021, 25 : 9185 - 9197
  • [9] Bayesian and Non-Bayesian Estimation for the Bivariate Inverse Weibull Distribution Under Progressive Type-II Censoring
    Muhammed H.Z.
    Almetwally E.M.
    [J]. Annals of Data Science, 2023, 10 (02) : 481 - 512
  • [10] Non-Bayesian estimation of Weibull Lindley burr XII distribution
    Amer, Etab Kazem
    Hassan, Nabeel J.
    Jassim, Hassan Kamil
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 977 - 989