共 50 条
Evaluation of flicker induced hyperemia in the retina and optic nerve head measured by Laser Speckle Flowgraphy
被引:18
|作者:
Fondi, Klemens
[1
]
Bata, Ahmed M.
[1
]
Luft, Nikolaus
[2
,3
]
Witkowska, Katarzyna J.
[1
]
Werkmeister, Rene M.
[4
]
Schmidl, Doreen
[1
]
Bolz, Matthias
[2
]
Schmetterer, Leopold
[1
,4
,5
,6
,7
]
Garhoefer, Gerhard
[1
]
机构:
[1] Med Univ Vienna, Dept Clin Pharmacol, Vienna, Austria
[2] Johannes Kepler Univ Linz, Kepler Univ Clin, Linz, Austria
[3] Ludwig Maximilians Univ Munchen, Univ Eye Hosp, Munich, Germany
[4] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Vienna, Austria
[5] Singapore Eye Res Inst, Singapore, Singapore
[6] Nanyang Technol Univ, Lee Kong Chian Sch Med, Singapore, Singapore
[7] Duke NUS Med Sch, Ophthalmol & Visual Sci Acad Clin Program, Singapore, Singapore
来源:
基金:
奥地利科学基金会;
关键词:
DIFFUSE LUMINANCE FLICKER;
BLOOD-FLOW;
VESSEL DIAMETERS;
STIMULATION;
MICROCIRCULATION;
VASODILATION;
DYSFUNCTION;
MECHANISMS;
RESPONSES;
PRESSURE;
D O I:
10.1371/journal.pone.0207525
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Purpose The coupling between neural activity and blood flow is a physiological key principle of ocular blood flow regulation. The current study was performed to investigate whether Laser speckle flowgraphy (LSFG), a commercially available technique for measuring blood flow, is capable to assess flicker-induced haemodynamic changes in the retinal and optic nerve head (ONH) circulation. Methods Twenty healthy subjects were included in this cross sectional study. A commercial LSFG instrument was used to measure blood flow at the ONH as well as in retinal vessels before and during stimulation with flickering light. Mean blur rate (MBR), a measure of relative blood flow velocity, was obtained for the ONH and relative flow volume (RFV) a measure of relative blood flow of the respective retinal vessels. Results Stimulation with flicker light increased ONH MBR by +17.5%+/- 6.6% (p<0.01). In retinal arteries, flicker stimulation led an increase of +23.8 +/- 10.0% (p<0.05) in total RFV. For retinal veins, an increase of +23.1%+/- 11.0 (p<0.05) in total RFV was observed during stimulation. A higher response was observed in nasal RFV compared to temporal RFV in retinal arteries (nasal: +28.9%+/- 20.0%; temporal: +20.4%+/- 17.6%, p<0.05) and veins (nasal: +28.3%+/- 19.6%; temporal +17.8%+/- 18.9%, p<0.05). Conclusion As shown previously with other techniques, flicker stimulation leads to an increase in retinal and optic nerve head blood flow. Our results indicate that LSFG is an appropriate method for the quantification of retinal and ONH blood flow during visual stimulation and may be used as a non-invasive, easy to use tool to assess neuro-vascular coupling in humans.
引用
收藏
页数:13
相关论文