Strong Fano Resonance Excited in an Array of Nanoparticle-in-Ring Nanostructures for Dual Plasmonic Sensor Applications

被引:21
|
作者
Ai, Bin [1 ]
Song, Chunyuan [2 ,3 ]
Bradley, Layne [1 ]
Zhao, Yiping [1 ]
机构
[1] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA
[2] Nanjing Univ Posts & Telecommun, Key Lab Organ Elect & Informat Displays, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, Inst Adv Mat, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Jiangsu Key Lab Biosensors, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, Inst Adv Mat, Nanjing 210023, Jiangsu, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2018年 / 122卷 / 36期
基金
美国国家科学基金会;
关键词
ENHANCED RAMAN-SCATTERING; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; METAL NANOPARTICLES; NANOCAVITIES; ANALOG; MODES; METAMATERIALS; SPECTROSCOPY; CLUSTERS; BEAM;
D O I
10.1021/acs.jpcc.8b05154
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A large-area (over 1 cm(2)) nanoparticle-in-ring array (NPIRA) with strong Fano resonance is fabricated by a low-cost shadow sphere lithography (SSL) method. Controlled narrow nanogaps of 8-20 nm are formed between the nanoparticles (NPs) and rings. Quadrupole modes are excited in the nanogaps and interact with the dipole mode of the NPs and ring, resulting in two Fano resonances. The two Fano resonances are in the visible and near-infrared region, respectively, and show a maximum refractive index sensitivity of 425 nm/RIU and a figure of merit of 4.7-7.1 RIU-1. In addition, the NPIRAs show enhanced Raman intensity due to the strong electric fields confined in the nanogaps. The structure has great potential for the dual plasmonic sensor applications, i.e., surface-enhanced Raman scattering and refractive index sensing, and provides a robust sensing performance for each.
引用
收藏
页码:20935 / 20944
页数:10
相关论文
共 19 条
  • [1] Fano resonance in dual-disk ring plasmonic nanostructures
    Niu, Lifang
    Zhang, Jing Bo
    Fu, Yuan Hsing
    Kulkarni, Shripad
    Luky'anchuk, Boris
    OPTICS EXPRESS, 2011, 19 (23): : 22974 - 22981
  • [2] Highly Sensitive Plasmonic Sensor Based on Fano Resonance from Silver Nanoparticle Heterodimer Array on a Thin Silver Film
    Ying Chang
    Yongyuan Jiang
    Plasmonics, 2014, 9 : 499 - 505
  • [3] Highly Sensitive Plasmonic Sensor Based on Fano Resonance from Silver Nanoparticle Heterodimer Array on a Thin Silver Film
    Chang, Ying
    Jiang, Yongyuan
    PLASMONICS, 2014, 9 (03) : 499 - 505
  • [4] Polarization dependent Fano resonance in a metallic triangle embedded in split ring plasmonic nanostructures
    Wang, Wudeng
    Li, Yudong
    Peng, Jingyang
    Chen, Zongqiang
    Qian, Jun
    Chen, Jing
    Xu, Jingjun
    Sun, Qian
    JOURNAL OF OPTICS, 2014, 16 (03)
  • [5] Subwavelength plasmonic liquid sensor using Fano resonance in a ring resonator structure
    Chauhan, Diksha
    Adhikari, Rammani
    Saini, Raj Kumar
    Chang, Sheng Hsiung
    Dwivedi, Ram Prakash
    OPTIK, 2020, 223
  • [6] Generating and Manipulating Higher Order Fano Resonances in Dual-Disk Ring Plasmonic Nanostructures
    Fu, Yuan Hsing
    Zhang, Jing Bo
    Yu, Ye Feng
    Luk'yanchuk, Boris
    ACS NANO, 2012, 6 (06) : 5130 - 5137
  • [7] Gold nano-double-ring array sensor based on Fano resonance
    Feng, Tiantai
    Xiang, Jiaqiong
    Liu, Chang
    Geng, Zhaoxin
    OPTICS COMMUNICATIONS, 2023, 530
  • [8] Fano resonance arising due to direct interaction of plasmonic and lattice modes in a mirrored array of split ring resonators
    Seliuta, Dalius
    Slekas, Gediminas
    Valusis, Gintaras
    Kancleris, Zilvinas
    OPTICS LETTERS, 2019, 44 (04) : 759 - 762
  • [9] Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators
    Zhang, Xuewei
    Qi, Yunping
    Zhou, Peiyang
    Gong, Hanhan
    Hu, Bingbing
    Yan, Chunman
    PHOTONIC SENSORS, 2018, 8 (04) : 367 - 374
  • [10] Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators
    Xuewei Zhang
    Yunping Qi
    Peiyang Zhou
    Hanhan Gong
    Bingbing Hu
    Chunman Yan
    Photonic Sensors, 2018, 8 : 367 - 374