Instrumentation for Exploring Mars with High Science Return Small Payload Missions

被引:1
|
作者
Clark, Pamela [1 ]
Barba, Nathan [1 ]
Komarek, Tomas [1 ]
Stamenkovic, Vlada [1 ]
Giersch, Louis [1 ]
Woolley, Ryan [1 ]
Edwards, Charles [1 ]
Anderson, Robert [1 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
关键词
D O I
10.1109/AERO50100.2021.9438183
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The Mars Exploration Directorate at the JPL is sponsoring a study to examine technical feasibility of developing small spacecraft missions (SSc) capable of low-cost, compelling science. Low cost small spacecraft missions can enable unique mission concepts in higher risk classes creating opportunities for compelling science missions in regions that may be otherwise remain unexplored, as well as for constellations, networks, scouts, and fundamentally new measurements. Potential science instruments for Mars Exploration Analysis Group (MEPAG) high-priority investigations suited to small spacecraft mass, volume, power, and cost constraints include compact versions of a camera (e.g., Mars Science Laboratory (MSL) Enhanced Engineering Camera (EECam)), Meteorology (e.g., MSL Meteorology Environmental Dynamics Analyzer (MEDA)), Seismometer (e.g., InSIGHT SEIS), Atmosphere and Trace Gases (e.g., MSL Tunable Laser Spectrometer (TLS)), Dust (e.g., ExoMars Micro Mars Environmental Dust (MicroMED)) analyzers, and fluxgate magnetometers (InSIGHT Mag). Two examples of low-cost mission concepts are LOKI (Localizing Organic Key Ingredients), an areostationary SmallSat orbital constellation designed to measure trace gases, and TH2OR, a time-domain EM sounder capable of water detection to a depth of many kilometers, which would be landed via a small high impact energy device (SHIELD).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Free return trajectories for Mars missions
    Hirata, C
    [J]. PROCEEDINGS OF THE FOUNDING CONVENTION OF THE MARS SOCIETY, PT III, 1999, : 831 - 834
  • [2] Mars Science Laboratory (MSL) and the future missions to Mars
    Cabane, Michel
    [J]. HIGHLIGHTS OF ASTRONOMY, VOL 15, 2010, 15 : 710 - 711
  • [3] Optimal free-return trajectories for Moon missions and Mars missions
    Miele, A
    Wang, T
    Mancuso, S
    [J]. JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2000, 48 (2-3): : 183 - 206
  • [4] Optimal Free-Return Trajectories for Moon Missions and Mars Missions
    Miele, A.
    Wang, T.
    Mancuso, S.
    [J]. The Journal of the Astronautical Sciences, 2000, Springer (48) : 2 - 3
  • [5] Optimal free-return trajectories for Moon missions and Mars missions
    Miele, A
    Wang, T
    Mancuso, S
    [J]. RICHARD H BATTIN ASTRODYNAMICS SYMPOSIUM, 2000, 106 : 93 - 115
  • [6] Fully-Propulsive Mars Atmospheric Transit Strategies for High-Mass Payload Missions
    Marsh, Christopher L.
    Braun, Robert D.
    [J]. 2009 IEEE AEROSPACE CONFERENCE, VOLS 1-7, 2009, : 472 - +
  • [7] SLS Evolution and Performance for Lunar Missions, Mars Missions, and Science Missions
    Haws, Terry D.
    Fuller, Michael E.
    [J]. 2021 IEEE AEROSPACE CONFERENCE (AEROCONF 2021), 2021,
  • [8] Mars 2020 payload poses 'science risk'
    Extance, Andy
    [J]. PHYSICS WORLD, 2014, 27 (09) : 11 - 11
  • [9] TECHNOLOGY ANALYSIS ON THE MARS SAMPLE-RETURN MISSIONS
    Gao Zhaohui
    Zhang Shu
    Shen Lin
    [J]. APPLICATIONS OF SPACE TECHNOLOGY FOR HUMANITY, 2010, 138 : 657 - 666
  • [10] Utilizing Small Launch Vehicles for Multiple Small Payload Missions
    Stender, Marissa
    Loghry, Chris
    [J]. 2017 IEEE AEROSPACE CONFERENCE, 2017,