Lie algebras with finite Gelfand-Kirillov dimension

被引:3
|
作者
Riley, D [1 ]
Usefi, H [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
关键词
D O I
10.1090/S0002-9939-05-07618-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that every finitely generated Lie algebra containing a nilpotent ideal of class c and finite codimension n has Gelfand-Kirillov dimension at most cn. In particular, finitely generated virtually nilpotent Lie algebras have polynomial growth.
引用
收藏
页码:1569 / 1572
页数:4
相关论文
共 50 条
  • [1] LEAVITT PATH ALGEBRAS OF FINITE GELFAND-KIRILLOV DIMENSION
    Alahmadi, Adel
    Alsulami, Hamed
    Jain, S. K.
    Zelmanov, Efim
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (06)
  • [2] *-Orderings and *-valuations on algebras of finite Gelfand-Kirillov dimension
    Marshall, M
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 179 (03) : 255 - 271
  • [3] The Gelfand-Kirillov conjecture for Lie algebras of dimension at most eight
    Alev, J
    Ooms, AI
    Van den Bergh, M
    JOURNAL OF ALGEBRA, 2000, 227 (02) : 549 - 581
  • [4] ON ALGEBRAS WITH GELFAND-KIRILLOV DIMENSION ONE
    KOBAYASHI, S
    KOBAYASHI, Y
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (04) : 1095 - 1104
  • [5] Graph algebras and the Gelfand-Kirillov dimension
    Moreno-Fernandez, Jose M.
    Siles Molina, Mercedes
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (05)
  • [6] GELFAND-KIRILLOV DIMENSION OF PI ALGEBRAS
    MALLIAVINBRAMERET, MP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (13): : 679 - 681
  • [7] Gelfand-Kirillov dimension in Jordan algebras
    Martinez, C
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) : 119 - 126
  • [8] Gelfand-Kirillov dimension of bicommutative algebras
    Bai, Yuxiu
    Chen, Yuqun
    Zhang, Zerui
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (22): : 7623 - 7649
  • [9] Gelfand-Kirillov dimension of brace algebras
    Li, Yu
    Moa, Qiuhui
    Zhang, Wenchao
    Zhao, Xiangui
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [10] On Nichols algebras of infinite rank with finite Gelfand-Kirillov dimension
    Andruskiewitsch, Nicolas
    Angiono, Ivan
    Heckenberger, Istvan
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (01) : 81 - 101