Neuro-flight controllers for aircraft using Minimal Resource Allocating Networks (MRAN)

被引:16
|
作者
Li, Y [1 ]
Sundararajan, N [1 ]
Saratchandran, P [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
来源
NEURAL COMPUTING & APPLICATIONS | 2001年 / 10卷 / 02期
关键词
aircraft flight control; fault tolerant control; feedback-error-learning; Minimal Resource Allocating Network (MRAN) Radial Basis Function Network (RBFN);
D O I
10.1007/s005210170009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the application of the recently developed Minimal Resource Allocating Network (MRAN) for aircraft flight control, with special emphasis on its robustness and fault tolerance properties. MRAN is a dynamic Radial Basis Function network (RBFN) incorporating a growing and pruning strategy resulting in a compact network structure. For the aircraft control application presented here, a simple scheme in which MRAN aids a conventional controller using a feedback error learning mechanism is presented. The robustness and the fault tolerant nature of the neuro controller is illustrated using a F8 fighter aircraft model in an autopilot mode. The objective of the controller is to follow the velocity and pitch rate pilot commands under large parameter variations and sudden changes in actuator time constants. Simulation results demonstrate the satisfactory performance of the MRAN neuro-flight controller even under these faulty conditions.
引用
收藏
页码:172 / 183
页数:12
相关论文
共 26 条
  • [1] Neuro-Flight Controllers for Aircraft Using Minimal Resource Allocating Networks (MRAN)
    Yan Li
    N. Sundararajan
    P. Saratchandran
    [J]. Neural Computing & Applications, 2001, 10 : 172 - 183
  • [2] Minimal resource allocating networks for aircraft SFDIA
    Fravolini, ML
    Campa, G
    Napolitano, M
    Song, Y
    [J]. 2001 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS PROCEEDINGS, VOLS I AND II, 2001, : 1251 - 1256
  • [3] ATM congestion control using Minimal Resource Allocation Networks (MRAN)
    Ng Hock Soon
    N. Sundararajan
    P. Saratch
    [J]. Neural Computing & Applications, 2003, 12 : 89 - 97
  • [4] ATM congestion control using minimal resource allocation networks (MRAN)
    Soon, NH
    Sundararajan, N
    Saratchandran, P
    [J]. NEURAL COMPUTING & APPLICATIONS, 2003, 12 (02): : 89 - 97
  • [5] Minimal Resource Allocation Network (MRAN) for Call Admission Control (CAC) of ATM networks
    Aiyar, M
    Nagpal, S
    Sundararajan, N
    Saratchandran, P
    [J]. IEEE INTERNATIONAL CONFERENCE ON NETWORKS 2000 (ICON 2000), PROCEEDINGS: NETWORKING TRENDS AND CHALLENGES IN THE NEW MILLENNIUM, 2000, : 498 - 498
  • [6] Nonlinear magnetic storage channel equalization using minimal resource allocation network (MRAN)
    Deng, JP
    Sundararajan, N
    Saratchandran, P
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (01): : 171 - 174
  • [7] Assessment of aircraft flight controllers using nonlinear robustness analysis techniques
    [J]. Seiler, P. (seiler@aem.umn.edu), 1600, Springer Verlag (416):
  • [8] Minimal Resource Allocating Networks for Discrete Time Sliding Mode Control of Robotic Manipulators
    Corradini, Maria Letizia
    Fossi, Valentino
    Giantomassi, Andrea
    Ippoliti, Gianluca
    Longhi, Sauro
    Orlando, Giuseppe
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2012, 8 (04) : 733 - 745
  • [10] Thermal error modeling of machine tool based on fuzzy -means cluster analysis and minimal-resource allocating networks
    Han, Jian
    Wang, Liping
    Cheng, Ningbo
    Wang, Haitong
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2012, 60 (5-8): : 463 - 472